Articoli correlati a Artificial Neural Networks and Structural Equation...

Artificial Neural Networks and Structural Equation Modeling: Marketing and Consumer Research Applications - Brossura

 
9789811965111: Artificial Neural Networks and Structural Equation Modeling: Marketing and Consumer Research Applications

Sinossi

This book goes into a detailed investigation of adapting artificial neural network (ANN) and structural equation modeling (SEM) techniques in marketing and consumer research. The aim of using a dual-stage SEM and ANN approach is to obtain linear and non-compensated relationships because the ANN method captures non-compensated relationships based on the black box technology of artificial intelligence. Hence, the ANN approach validates the results of the SEM method. In addition, such the novel emerging approach increases the validity of the prediction by determining the importance of the variables. Consequently, the number of studies using SEM-ANN has increased, but the different types of study cases that show customization of different processes in ANNs method combination with SEM are still unknown, and this aspect will be affecting to the generation results. Thus, there is a need for further investigation in marketing and consumer research. This book bridges the significant gap in this research area.

The adoption of SEM and ANN techniques in social commerce and consumer research is massive all over the world. Such an expansion has generated more need to learn how to capture linear and non-compensatory relationships in such area. This book would be a valuable reading companion mainly for business and management students in higher academic organizations, professionals, policy-makers, and planners in the field of marketing. This book would also be appreciated by researchers who are keenly interested in social commerce and consumer research.


Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

 Alhamzah Alnoor is a professional administrator with ten years of experience in organizational studies, social commerce, internship programs, multi-criteria decision analysis, leadership and innovation, strategic planning, and technology acceptance models. Successfully achieved several projects during my career with impactful business values. Creative, flexible, motivated with active optimism and belief in diversity and inclusion. He is a reviewer for many journals. He published many papers in different and high-impact journals. He is a senior lecturer at the Southern Technical University, Management Technical College. He received his M.B.A. from the University of Basrah, Iraq. He received his Ph.D. from the School of Management, Universiti Sains Malaysia, Malaysia.

Khaw Khai Wah is a senior lecturer in the School of Management, Universiti Sains Malaysia. He holds a Ph.D. in statistical quality control from Universiti Sains Malaysia. He is acoordinator of the Business Analytics Program in the School of Management, USM. His areas of research are in advanced analytics and statistical quality/process control. He has featured in prominent international publications. His efforts and excellence have been acknowledged and awarded at several dignified platforms. He is actively involved in conducting training in statistics and visualization. Prior to his academic career, he worked in a renowned US multinational company as a data analytics team leader.

Azizul Hassan is a member of the Tourism Consultants Network of the UK Tourism Society. Hassan’s areas of research interest are technology-supported marketing for tourism and hospitality, immersive technology application in the tourism and hospitality industry, and technology-influenced marketing suggestions for sustainable tourism and hospitality industry in developing countries. Hassan authored over 100 articles and book chapters in leading tourism outlets. He is also partof the editorial team of 20 book projects from Routledge, Springer, CAB International and Emerald Group Publishing Limited. Hassan is a regular reviewer of Tourism Management, Journal of Hospitality and Tourism Management, Tourism Analysis, the International Journal of Human Resource Management, Journal of Ecotourism, Journal of Business Research, eReview of Tourism Research (eRTR), International Interdisciplinary Business-Economics Advancement Journal, International Journal of Tourism Cities, Heliyon, Technology in Society, Anatolia, Journal of King Saud University - Computer and Information Sciences, and Tourism Recreation Research.


Dalla quarta di copertina

This book goes into a detailed investigation of adapting artificial neural network (ANN) and structural equation modeling (SEM) techniques in marketing and consumer research. The aim of using a dual-stage SEM and ANN approach is to obtain linear and non-compensated relationships because the ANN method captures non-compensated relationships based on the black box technology of artificial intelligence. Hence, the ANN approach validates the results of the SEM method. In addition, such the novel emerging approach increases the validity of the prediction by determining the importance of the variables. Consequently, the number of studies using SEM-ANN has increased, but the different types of study cases that show customization of different processes in ANNs method combination with SEM are still unknown, and this aspect will be affecting to the generation results. Thus, there is a need for further investigation in marketing and consumer research. This book bridges the significant gap in this research area.

The adoption of SEM and ANN techniques in social commerce and consumer research is massive all over the world. Such an expansion has generated more need to learn how to capture linear and non-compensatory relationships in such area. This book would be a valuable reading companion mainly for business and management students in higher academic organizations, professionals, policy-makers, and planners in the field of marketing. This book would also be appreciated by researchers who are keenly interested in social commerce and consumer research.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,11 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9789811965081: Artificial Neural Networks and Structural Equation Modeling: Marketing and Consumer Research Applications

Edizione in evidenza

ISBN 10:  9811965080 ISBN 13:  9789811965081
Casa editrice: Springer Nature, 2022
Rilegato

Risultati della ricerca per Artificial Neural Networks and Structural Equation...

Immagini fornite dal venditore

Editore: Springer Nature Singapore, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Fills the gap in the research on artificial neural networks and structural equation modeling for marketing Considers how the methods described could be utiliszed to promote green practices and social responsibilityConsiders future uses of A. Codice articolo 1215161341

Contatta il venditore

Compra nuovo

EUR 144,94
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9789811965111_new

Contatta il venditore

Compra nuovo

EUR 159,73
Convertire valuta
Spese di spedizione: EUR 10,39
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alnoor, Alhamzah (EDT); Wah, Khaw Khai (EDT); Hassan, Azizul (EDT)
Editore: Springer, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 46857348-n

Contatta il venditore

Compra nuovo

EUR 159,71
Convertire valuta
Spese di spedizione: EUR 17,34
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alnoor, Alhamzah (EDT); Wah, Khaw Khai (EDT); Hassan, Azizul (EDT)
Editore: Springer, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 46857348

Contatta il venditore

Compra usato

EUR 160,72
Convertire valuta
Spese di spedizione: EUR 17,11
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alnoor, Alhamzah (EDT); Wah, Khaw Khai (EDT); Hassan, Azizul (EDT)
Editore: Springer, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 46857348-n

Contatta il venditore

Compra nuovo

EUR 162,28
Convertire valuta
Spese di spedizione: EUR 17,11
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alhamzah Alnoor
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book goes into a detailed investigation of adapting artificial neural network (ANN) and structural equation modeling (SEM) techniques in marketing and consumer research. The aim of using a dual-stage SEM and ANN approach is to obtain linear and non-compensated relationships because the ANN method captures non-compensated relationships based on the black box technology of artificial intelligence. Hence, the ANN approach validates the results of the SEM method. In addition, such the novel emerging approach increases the validity of the prediction by determining the importance of the variables. Consequently, the number of studies using SEM-ANN has increased, but the different types of study cases that show customization of different processes in ANNs method combination with SEM are still unknown, and this aspect will be affecting to the generation results. Thus, there is a need for further investigation in marketing and consumer research. This book bridges the significant gap in this research area. The adoption of SEM and ANN techniques in social commerce and consumer research is massive all over the world. Such an expansion has generated more need to learn how to capture linear and non-compensatory relationships in such area. This book would be a valuable reading companion mainly for business and management students in higher academic organizations, professionals, policy-makers, and planners in the field of marketing. This book would also be appreciated by researchers who are keenly interested in social commerce and consumer research. 352 pp. Englisch. Codice articolo 9789811965111

Contatta il venditore

Compra nuovo

EUR 171,19
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuovo Brossura

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9789811965111

Contatta il venditore

Compra nuovo

EUR 157,58
Convertire valuta
Spese di spedizione: EUR 25,66
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alnoor, Alhamzah (EDT); Wah, Khaw Khai (EDT); Hassan, Azizul (EDT)
Editore: Springer, 2023
ISBN 10: 9811965110 ISBN 13: 9789811965111
Antico o usato Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 46857348

Contatta il venditore

Compra usato

EUR 167,13
Convertire valuta
Spese di spedizione: EUR 17,34
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alhamzah Alnoor
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book goes into a detailed investigation of adapting artificial neural network (ANN) and structural equation modeling (SEM) techniques in marketing and consumer research. The aim of using a dual-stage SEM and ANN approach is to obtain linear and non-compensated relationships because the ANN method captures non-compensated relationships based on the black box technology of artificial intelligence. Hence, the ANN approach validates the results of the SEM method. In addition, such the novel emerging approach increases the validity of the prediction by determining the importance of the variables. Consequently, the number of studies using SEM-ANN has increased, but the different types of study cases that show customization of different processes in ANNs method combination with SEM are still unknown, and this aspect will be affecting to the generation results. Thus, there is a need for further investigation in marketing and consumer research. This book bridges the significant gap in this research area.The adoption of SEM and ANN techniques in social commerce and consumer research is massive all over the world. Such an expansion has generated more need to learn how to capture linear and non-compensatory relationships in such area. This book would be a valuable reading companion mainly for business and management students in higher academic organizations, professionals, policy-makers, and planners in the field of marketing. This book would also be appreciated by researchers who are keenly interested in social commerce and consumer research.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 352 pp. Englisch. Codice articolo 9789811965111

Contatta il venditore

Compra nuovo

EUR 171,19
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alhamzah Alnoor
ISBN 10: 9811965110 ISBN 13: 9789811965111
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book goes into a detailed investigation of adapting artificial neural network (ANN) and structural equation modeling (SEM) techniques in marketing and consumer research. The aim of using a dual-stage SEM and ANN approach is to obtain linear and non-compensated relationships because the ANN method captures non-compensated relationships based on the black box technology of artificial intelligence. Hence, the ANN approach validates the results of the SEM method. In addition, such the novel emerging approach increases the validity of the prediction by determining the importance of the variables. Consequently, the number of studies using SEM-ANN has increased, but the different types of study cases that show customization of different processes in ANNs method combination with SEM are still unknown, and this aspect will be affecting to the generation results. Thus, there is a need for further investigation in marketing and consumer research. This book bridges the significant gap in this research area. The adoption of SEM and ANN techniques in social commerce and consumer research is massive all over the world. Such an expansion has generated more need to learn how to capture linear and non-compensatory relationships in such area. This book would be a valuable reading companion mainly for business and management students in higher academic organizations, professionals, policy-makers, and planners in the field of marketing. This book would also be appreciated by researchers who are keenly interested in social commerce and consumer research. Codice articolo 9789811965111

Contatta il venditore

Compra nuovo

EUR 175,09
Convertire valuta
Spese di spedizione: EUR 14,99
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 5 copie di questo libro

Vedi tutti i risultati per questo libro