This volume is devoted to the study of hyperbolic free boundary problems possessing variational structure. Such problems can be used to model, among others, oscillatory motion of a droplet on a surface or bouncing of an elastic body against a rigid obstacle. In the case of the droplet, for example, the membrane surrounding the fluid in general forms a positive contact angle with the obstacle, and therefore the second derivative is only a measure at the contact free boundary set. We will show how to derive the mathematical problem for a few physical systems starting from the action functional, discuss the mathematical theory, and introduce methods for its numerical solution. The mathematical theory and numerical methods depart from the classical approaches in that they are based on semi-discretization in time, which facilitates the application of the modern theory of calculus of variations.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Seiro Omata was born in 1957 in Tokyo and received his Master and PhD degrees from Keio University. Since 1994 he has been working at Kanazawa University, becoming Full Professor in 2004. His research focuses on nonlinear evolutionary PDEs, including variational and free boundary problems, numerical analysis and applied analysis spanning numerous topics from fluid dynamics to mathematical finance. He devoted himself to the development of mathematics through the Mathematical Society of Japan, being invited as plenary speaker at its annual meeting in 2014 and serving as the chair of annual meeting in 2019.
This volume is devoted to the study of hyperbolic free boundary problems possessing variational structure. Such problems can be used to model, among others, oscillatory motion of a droplet on a surface or bouncing of an elastic body against a rigid obstacle. In the case of the droplet, for example, the membrane surrounding the fluid in general forms a positive contact angle with the obstacle, and therefore the second derivative is only a measure at the contact free boundary set. We will show how to derive the mathematical problem for a few physical systems starting from the action functional, discuss the mathematical theory, and introduce methods for its numerical solution. The mathematical theory and numerical methods depart from the classical approaches in that they are based on semi-discretization in time, which facilitates the application of the modern theory of calculus of variations.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 2,26 per la spedizione in U.S.A.
Destinazione, tempi e costiEUR 13,77 per la spedizione da Regno Unito a U.S.A.
Destinazione, tempi e costiDa: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9789811967306_new
Quantità: Più di 20 disponibili
Da: Chiron Media, Wallingford, Regno Unito
PF. Condizione: New. Codice articolo 6666-IUK-9789811967306
Quantità: 10 disponibili
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-259982
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 45502877-n
Quantità: 15 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9789811967306
Quantità: Più di 20 disponibili
Da: Grand Eagle Retail, Bensenville, IL, U.S.A.
Paperback. Condizione: new. Paperback. This volume is devoted to the study of hyperbolic free boundary problems possessing variational structure. Such problems can be used to model, among others, oscillatory motion of a droplet on a surface or bouncing of an elastic body against a rigid obstacle. In the case of the droplet, for example, the membrane surrounding the fluid in general forms a positive contact angle with the obstacle, and therefore the second derivative is only a measure at the contact free boundary set. We will show how to derive the mathematical problem for a few physical systems starting from the action functional, discuss the mathematical theory, and introduce methods for its numerical solution. The mathematical theory and numerical methods depart from the classical approaches in that they are based on semi-discretization in time, which facilitates the application of the modern theory of calculus of variations. We will show how to derive the mathematical problem for a few physical systems starting from the action functional, discuss the mathematical theory, and introduce methods for its numerical solution. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9789811967306
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 45502877
Quantità: 15 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 1st ed. 2022 edition NO-PA16APR2015-KAP. Codice articolo 26396345585
Quantità: 4 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This volume is devoted to the study of hyperbolic free boundary problems possessing variational structure. Such problems can be used to model, among others, oscillatory motion of a droplet on a surface or bouncing of an elastic body against a rigid obstacle. In the case of the droplet, for example, the membrane surrounding the fluid in general forms a positive contact angle with the obstacle, and therefore the second derivative is only a measure at the contact free boundary set. We will show how to derive the mathematical problem for a few physical systems starting from the action functional, discuss the mathematical theory, and introduce methods for its numerical solution. The mathematical theory and numerical methods depart from the classical approaches in that they are based on semi-discretization in time, which facilitates the application of the modern theory of calculus of variations. 104 pp. Englisch. Codice articolo 9789811967306
Quantità: 2 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 401112878
Quantità: 4 disponibili