Articoli correlati a Digital Watermarking for Machine Learning Model: Techniques,...

Digital Watermarking for Machine Learning Model: Techniques, Protocols and Applications - Rilegato

 
9789811975530: Digital Watermarking for Machine Learning Model: Techniques, Protocols and Applications

Sinossi

Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR).  Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model’s owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts.  In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning.  

This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking.  Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed federated learning settings.


Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Lixin Fan is currently the Chief Scientist of Artificial Intelligence at WeBank, Shenzhen, China. His research interests include machine learning and deep learning, privacy computing and federated learning, computer vision and pattern recognition, image and video processing, mobile computing and ubiquitous computing. He was the Organizing Chair of workshops in these research areas held in CVPR, ICCV, ICPR, ACCV, NeurIPS, AAAI, and IJCAI.  He is the author of 3 edited books and more than 70 articles in peer-review international journals and conference proceedings. He holds more than one hundred patents filed in the United States, Europe and China, and he was Chairman of the IEEE P2894 Explainable Artificial Intelligence (XAI) Standard Working Group.

 

Chee Seng Chan is currently a Full Professor at the Faculty of Computer Science and Information Technology, Universiti Malaya, Kuala Lumpur, Malaysia. His research interests include computer vision and machine learning where he has published more than 100 papers in related top peer-review conferences and journals. He was the Organizing Chair of the Asian Conference on Pattern Recognition (2015) and General Chair of the IEEE Workshop on Multimedia Signal Processing (2019) and IEEE Visual Communications and Image Processing (2013). He was the recipient of Top Research Scientists Malaysia (TRSM) in 2022, Young Scientists Network Academy of Sciences Malaysia (YSN-ASM) in 2015 and Hitachi Research Fellowship in 2013. Besides that, he is also a senior member (IEEE), Professional Engineer (BEM) and Chartered Engineer (IET). During 2020-2022, he was seconded to the Ministry of Science, Technology and Innovation (MOSTI) as the Undersecretary for Division of Data Strategic and Foresight.

 

Qiang Yang is a Fellow of the Canadian Academy of Engineering (CAE) and Royal Society of Canada (RSC), Chief Artificial Intelligence Officer of WeBank,and Chair Professor at the Computer Science and Engineering Department of Hong Kong University of Science and Technology (HKUST). He is the Conference Chair of AAAI-21, Honorary Vice President of the Chinese Association for Artificial Intelligence (CAAI), President of the Hong Kong Society of Artificial Intelligence and Robotics (HKSAIR) and President of the Investment Technology League (ITL). He is a fellow of the AAAI, ACM, CAAI, IEEE, IAPR and AAAS. He was the Founding Editor in Chief of the ACM Transactions on Intelligent Systems and Technology (ACM TIST) and the Founding Editor in Chief of IEEE Transactions on Big Data (IEEE TBD). He received the ACM SIGKDD Distinguished Service Award in 2017. He served as Founding Director of Huawei’s Noah’s Ark Research Lab from 2012 to 2015, Founding Director of HKUST’s Big Data Institute, Founder of 4Paradigm and President of the IJCAI (2017-2019).  His research interests include artificial intelligence, machine learning, data mining andplanning.


Dalla quarta di copertina

Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR).  Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model’s owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts.  In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning.  

This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking.  Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed federated learning settings.


Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,26 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 9,70 per la spedizione da Germania a Italia

Destinazione, tempi e costi

Altre edizioni note dello stesso titolo

9789811975561: Digital Watermarking for Machine Learning Model: Techniques, Protocols and Applications

Edizione in evidenza

ISBN 10:  9811975566 ISBN 13:  9789811975561
Casa editrice: Springer, 2024
Brossura

Risultati della ricerca per Digital Watermarking for Machine Learning Model: Techniques,...

Immagini fornite dal venditore

ISBN 10: 9811975531 ISBN 13: 9789811975530
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 715557201

Contatta il venditore

Compra nuovo

EUR 144,94
Convertire valuta
Spese di spedizione: EUR 9,70
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2023
ISBN 10: 9811975531 ISBN 13: 9789811975530
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9789811975530_new

Contatta il venditore

Compra nuovo

EUR 152,39
Convertire valuta
Spese di spedizione: EUR 10,33
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Fan, Lixin (EDT); Chan, Chee Seng (EDT); Yang, Qiang (EDT)
Editore: Springer, 2023
ISBN 10: 9811975531 ISBN 13: 9789811975530
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 46089332-n

Contatta il venditore

Compra nuovo

EUR 152,38
Convertire valuta
Spese di spedizione: EUR 17,23
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

FAN L
Editore: SPRINGER NP, 2023
ISBN 10: 9811975531 ISBN 13: 9789811975530
Nuovo Rilegato

Da: UK BOOKS STORE, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Brand New! Fast Delivery US Edition and ship within 24-48 hours. Deliver by FedEx and Dhl, & Aramex, UPS, & USPS and we do accept APO and PO BOX Addresses. Order can be delivered worldwide within 7-10 days and we do have flat rate for up to 2LB. Extra shipping charges will be requested if the Book weight is more than 5 LB. This Item May be shipped from India, United states & United Kingdom. Depending on your location and availability. Codice articolo CBS 9789811975530

Contatta il venditore

Compra nuovo

EUR 171,36
Convertire valuta
Spese di spedizione: EUR 5,73
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

FAN L
Editore: SPRINGER NP, 2023
ISBN 10: 9811975531 ISBN 13: 9789811975530
Nuovo Rilegato

Da: URW Books Store, CASPER, WY, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Brand New. Brand New! Fast Delivery, Delivery With In 7-10 working Day Only , USA Edition Original Edition. Excellent Quality, Printing In English Language, Quick delivery by FEDEX & DHL. USPS & UPS Act. Our courier service is not available at PO BOX& APO BOX. Ship from India & United States. Codice articolo CBSBOOKS53511

Contatta il venditore

Compra nuovo

EUR 172,19
Convertire valuta
Spese di spedizione: EUR 7,76
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Lixin Fan
ISBN 10: 9811975531 ISBN 13: 9789811975530
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR). Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model's owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts. In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning. This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking. Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed federated learning settings. 244 pp. Englisch. Codice articolo 9789811975530

Contatta il venditore

Compra nuovo

EUR 171,19
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Fan, Lixin (EDT); Chan, Chee Seng (EDT); Yang, Qiang (EDT)
Editore: Springer, 2023
ISBN 10: 9811975531 ISBN 13: 9789811975530
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 46089332

Contatta il venditore

Compra usato

EUR 166,40
Convertire valuta
Spese di spedizione: EUR 17,26
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Fan, Lixin (EDT); Chan, Chee Seng (EDT); Yang, Qiang (EDT)
Editore: Springer, 2023
ISBN 10: 9811975531 ISBN 13: 9789811975530
Antico o usato Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 46089332

Contatta il venditore

Compra usato

EUR 166,87
Convertire valuta
Spese di spedizione: EUR 17,23
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Fan, Lixin (EDT); Chan, Chee Seng (EDT); Yang, Qiang (EDT)
Editore: Springer, 2023
ISBN 10: 9811975531 ISBN 13: 9789811975530
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 46089332-n

Contatta il venditore

Compra nuovo

EUR 168,77
Convertire valuta
Spese di spedizione: EUR 17,26
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Lixin Fan
ISBN 10: 9811975531 ISBN 13: 9789811975530
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -Machine learning (ML) models, especially large pretrained deep learning (DL) models, are of high economic value and must be properly protected with regard to intellectual property rights (IPR). Model watermarking methods are proposed to embed watermarks into the target model, so that, in the event it is stolen, the model¿s owner can extract the pre-defined watermarks to assert ownership. Model watermarking methods adopt frequently used techniques like backdoor training, multi-task learning, decision boundary analysis etc. to generate secret conditions that constitute model watermarks or fingerprints only known to model owners. These methods have little or no effect on model performance, which makes them applicable to a wide variety of contexts. In terms of robustness, embedded watermarks must be robustly detectable against varying adversarial attacks that attempt to remove the watermarks. The efficacy of model watermarking methods is showcased in diverse applications including image classification, image generation, image captions, natural language processing and reinforcement learning.This book covers the motivations, fundamentals, techniques and protocols for protecting ML models using watermarking. Furthermore, it showcases cutting-edge work in e.g. model watermarking, signature and passport embedding and their use cases in distributed federated learning settings.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 244 pp. Englisch. Codice articolo 9789811975530

Contatta il venditore

Compra nuovo

EUR 171,19
Convertire valuta
Spese di spedizione: EUR 15,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 6 copie di questo libro

Vedi tutti i risultati per questo libro