This book describes theoretical elements, practical approaches, and specialized tools that systematically organize, characterize, and analyze big data gathered from educational affairs and settings. Moreover, the book shows several inference criteria to leverage and produce descriptive, explanatory, and predictive closures to study and understand education phenomena at in classroom and online environments.
This is why diverse researchers and scholars contribute with valuable chapters to ground with well-–sounded theoretical and methodological constructs in the novel field of Educational Data Science (EDS), which examines academic big data repositories, as well as to introduces systematic reviews, reveals valuable insights, and promotes its application to extend its practice.
EDS as a transdisciplinary field relies on statistics, probability, machine learning, data mining, and analytics, in addition to biological, psychological, and neurological knowledge aboutlearning science. With this in mind, the book is devoted to those that are in charge of educational management, educators, pedagogues, academics, computer technologists, researchers, and postgraduate students, who pursue to acquire a conceptual, formal, and practical landscape of how to deploy EDS to build proactive, real- time, and reactive applications that personalize education, enhance teaching, and improve learning!
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Prof. Alejandro Peņa-Ayala, is professor of Artificial Intelligence on Education & cognition in the School of Electric & Mechanical Engineering of the National Polytechnic Institute of México. Dr. Peņa-Ayala has published more than 50 scientific works and is author of three machine learning patents (two of them in progress to be authorized), including the role of guest-editor for six Springer Book Series and guest-editor for an Elsevier journal. He is fellow of the National Researchers System of Mexico, the Mexican Academy of Sciences, Academy of Engineering, and the Mexican Academy of Informatics. Professor Peņa-Ayala was scientific visitor of the MIT in 2016, made his postdoc at the Osaka University 2010-2012, and earned with honors his PhD, M. Sc., & B. Sc. in computer sciences, artificial intelligence, and informatics respectively.
This book describes theoretical elements, practical approaches, and specialized tools that systematically organize, characterize, and analyze big data gathered from educational affairs and settings. Moreover, the book shows several inference criteria to leverage and produce descriptive, explanatory, and predictive closures to study and understand education phenomena at in classroom and online environments.
This is why diverse researchers and scholars contribute with valuable chapters to ground with well-–sounded theoretical and methodological constructs in the novel field of Educational Data Science (EDS), which examines academic big data repositories, as well as to introduces systematic reviews, reveals valuable insights, and promotes its application to extend its practice.
EDS as a transdisciplinary field relies on statistics, probability, machine learning, data mining, and analytics, in addition to biological, psychological, and neurological knowledge aboutlearning science. With this in mind, the book is devoted to those that are in charge of educational management, educators, pedagogues, academics, computer technologists, researchers, and postgraduate students, who pursue to acquire a conceptual, formal, and practical landscape of how to deploy EDS to build proactive, real- time, and reactive applications that personalize education, enhance teaching, and improve learning!
Chapter “Sync Ratio and Cluster Heat Map for Visualizing Student Engagement” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Da: Basi6 International, Irving, TX, U.S.A.
Condizione: Brand New. New. US edition. Expediting shipping for all USA and Europe orders excluding PO Box. Excellent Customer Service. Codice articolo ABEOCT25-17067
Quantitā: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. 2023rd edition NO-PA16APR2015-KAP. Codice articolo 26396348974
Quantitā: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 401109489
Quantitā: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18396348964
Quantitā: 1 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book describes theoretical elements, practical approaches, and specialized tools that systematically organize, characterize, and analyze big data gathered from educational affairs and settings. Moreover, the book shows several inference criteria to . Codice articolo 784368277
Quantitā: Pių di 20 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware 308 pp. Englisch. Codice articolo 9789819900251
Quantitā: 2 disponibili
Da: preigu, Osnabrück, Germania
Buch. Condizione: Neu. Educational Data Science: Essentials, Approaches, and Tendencies | Proactive Education based on Empirical Big Data Evidence | Alejandro Peņa-Ayala | Buch | xiii | Englisch | 2023 | Springer Singapore | EAN 9789819900251 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Codice articolo 126336656
Quantitā: 5 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Buch. Condizione: Neu. Neuware -This book describes theoretical elements, practical approaches, and specialized tools that systematically organize, characterize, and analyze big data gathered from educational affairs and settings. Moreover, the book shows several inference criteria to leverage and produce descriptive, explanatory, and predictive closures to study and understand education phenomena at in classroom and online environments.This is why diverse researchers and scholars contribute with valuable chapters to ground with well-ŋsounded theoretical and methodological constructs in the novel field of Educational Data Science (EDS), which examines academic big data repositories, as well as to introduces systematic reviews, reveals valuable insights, and promotes its application to extend its practice.EDS as a transdisciplinary field relies on statistics, probability, machine learning, data mining, and analytics, in addition to biological, psychological, and neurological knowledge aboutlearning science. With this in mind, the book is devoted to those that are in charge of educational management, educators, pedagogues, academics, computer technologists, researchers, and postgraduate students, who pursue to acquire a conceptual, formal, and practical landscape of how to deploy EDS to build proactive, real- time, and reactive applications that personalize education, enhance teaching, and improve learning!Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 312 pp. Englisch. Codice articolo 9789819900251
Quantitā: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering. Codice articolo 9789819900251
Quantitā: 1 disponibili