Articoli correlati a Machine Learning Assisted Evolutionary Multi and Many...

Machine Learning Assisted Evolutionary Multi and Many Objective Optimization - Rilegato

 
9789819920952: Machine Learning Assisted Evolutionary Multi and Many Objective Optimization
  • EditoreSpringer-Nature New York Inc
  • Data di pubblicazione2024
  • ISBN 10 9819920957
  • ISBN 13 9789819920952
  • RilegaturaCopertina rigida
  • LinguaInglese
  • Numero di pagine260

EUR 48,99 per la spedizione da Germania a U.S.A.

Destinazione, tempi e costi

Risultati della ricerca per Machine Learning Assisted Evolutionary Multi and Many...

Immagini fornite dal venditore

Saxena, Dhish Kumar|Mittal, Sukrit|Deb, Kalyanmoy|Goodman, Erik D.
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: moluna, Greven, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Codice articolo 838236801

Contatta il venditore

Compra nuovo

EUR 144,94
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Editore: Springer, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9789819920952

Contatta il venditore

Compra nuovo

EUR 193,94
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dhish Kumar Saxena
Editore: Apress Mrz 2024, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits.Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners.To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types.Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMâOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMâOA domain.To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMâOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMâOA and ML domains. 244 pp. Englisch. Codice articolo 9789819920952

Contatta il venditore

Compra nuovo

EUR 171,19
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Saxena, Dhish Kumar; Mittal, Sukrit; Deb, Kalyanmoy; Goodman, Erik D.
Editore: Springer, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9789819920952_new

Contatta il venditore

Compra nuovo

EUR 181,06
Convertire valuta
Spese di spedizione: EUR 14,08
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Dhish Kumar Saxena
Editore: Springer Nature Singapore, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits.Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners.To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types.Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMâOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMâOA domain.To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMâOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMâOA and ML domains. Codice articolo 9789819920952

Contatta il venditore

Compra nuovo

EUR 175,09
Convertire valuta
Spese di spedizione: EUR 30,79
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Dhish Kumar Saxena
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: CitiRetail, Stevenage, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMaO). EMaO algorithms, namely EMaOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMaOAs amenable to application of ML for different pursuits. Recognizing the immense potential for ML-based enhancements in the EMaO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners. To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types. Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMaO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMaOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMaOA domain.To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMaOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMaOA and ML domains. This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMaO). Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMaOA domain.To aid readers, the book includes working codes for the developed algorithms. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9789819920952

Contatta il venditore

Compra nuovo

EUR 189,98
Convertire valuta
Spese di spedizione: EUR 43,47
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Saxena, Dhish Kumar/ Mittal, Sukrit/ Deb, Kalyanmoy/ Goodman, Erik D.
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: Brand New. 259 pages. 9.25x6.10x9.21 inches. In Stock. Codice articolo x-9819920957

Contatta il venditore

Compra nuovo

EUR 253,74
Convertire valuta
Spese di spedizione: EUR 11,75
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Saxena, Dhish Kumar, Mittal, Sukrit, Deb, Kalyanmoy, Goodman
Editore: Springer, 2024
ISBN 10: 9819920957 ISBN 13: 9789819920952
Nuovo Rilegato

Da: dsmbooks, Liverpool, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

hardcover. Condizione: New. New. book. Codice articolo D8S0-3-M-9819920957-6

Contatta il venditore

Compra nuovo

EUR 304,89
Convertire valuta
Spese di spedizione: EUR 29,37
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello