Articoli correlati a TENSORFLOW’S SWARM ALGORITHMS OPTIMIZING COLLECTIVE...

TENSORFLOW’S SWARM ALGORITHMS OPTIMIZING COLLECTIVE BEHAVIORS: A Deep Dive into Evolutionary and Neural Approaches for Robot Swarms - Brossura

 
9798263195205: TENSORFLOW’S SWARM ALGORITHMS OPTIMIZING COLLECTIVE BEHAVIORS: A Deep Dive into Evolutionary and Neural Approaches for Robot Swarms

Sinossi

Harness the power of deep learning to optimize robot swarms and unlock autonomous collaboration.

In TENSORFLOW’S SWARM ALGORITHMS, you’ll explore how to apply evolutionary algorithms and neural networks to solve complex coordination problems in robotic swarms. This practical guide shows you how to design intelligent, scalable, and adaptive multi-agent systems using TensorFlow to model, optimize, and deploy swarm behaviors.

Inside, you’ll discover how to:

  • Implement evolutionary algorithms (genetic algorithms, genetic programming) for optimizing swarm strategies like formation control, coverage, and pathfinding.

  • Build reinforcement learning (RL) and deep RL models that enable robots to adapt and improve collective behavior over time.

  • Apply neural networks (CNNs, RNNs, and GNNs) to enable robots to share knowledge, learn behaviors, and make decisions collectively.

  • Design scalable swarm behaviors: task allocation, cooperative exploration, and multi-robot localization using TensorFlow and ROS2.

  • Train your robot swarm models on simulated environments with domain randomization and sim-to-real techniques.

  • Optimize swarm behavior with distributed training, multi-agent systems (MAS), and collaborative learning using TensorFlow 2.x.

  • Use TensorFlow’s advanced tools for model optimization, pruning, quantization, and deployment to real robots for edge inference.

  • Validate your swarm behaviors using Gazebo simulation, real-world performance testing, and rosbag data logging.

  • Explore real-world applications in fields like search-and-rescue, logistics, and autonomous transportation.

With hands-on code examples, step-by-step guidance, and best practices, this book takes you from theory to deployment, helping you build robust and scalable swarm robotics systems that learn, evolve, and execute tasks together autonomously.

Who This Book Is For
  • Robotics engineers and ML practitioners building adaptive robot swarms

  • Researchers and students working on multi-agent systems, evolutionary algorithms, and deep reinforcement learning

  • Product teams deploying swarm robotics in real-world applications like logistics, search-and-rescue, and autonomous delivery

  • TensorFlow users seeking to extend their knowledge into evolutionary optimization and robotic swarm coordination

From individual robots to collaborative collectives—train and deploy smarter, more efficient swarms with TensorFlow.

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Risultati della ricerca per TENSORFLOW’S SWARM ALGORITHMS OPTIMIZING COLLECTIVE...

Foto dell'editore

Myles, Isandro; Halesworth, Corwin
Editore: Independently published, 2025
ISBN 13: 9798263195205
Nuovo Brossura
Print on Demand

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo I-9798263195205

Contatta il venditore

Compra nuovo

EUR 18,39
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Myles, Isandro; Halesworth, Corwin
Editore: Independently published, 2025
ISBN 13: 9798263195205
Nuovo Brossura

Da: Best Price, Torrance, CA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. SUPER FAST SHIPPING. Codice articolo 9798263195205

Contatta il venditore

Compra nuovo

EUR 12,28
Convertire valuta
Spese di spedizione: EUR 7,63
In U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello