Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.
Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis.
After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.
What You'll Learn
Who This Book Is For
Developers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis.
Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.
Robert Johansson is a numerical Python expert and computational scientist who has worked with SymPy, NumPy, and QuTiP, an open-source Python framework for simulating the dynamics of quantum systems.
Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.
Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis.
After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.
What You'll Learn
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
EUR 16,97 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiEUR 7,64 per la spedizione da U.S.A. a Italia
Destinazione, tempi e costiDa: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9798868804120
Quantità: Più di 20 disponibili
Da: Rarewaves USA, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. Third Edition. Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.What You'll LearnWork with vectors and matrices using NumPyReview Symbolic computing with SymPyPlot and visualize data with MatplotlibPerform data analysis tasks with Pandas and SciPyUnderstand statistical modeling and machine learning with statsmodels and scikit-learnOptimize Python code using Numba and CythonWho This Book Is ForDevelopers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis. Codice articolo LU-9798868804120
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathe. Codice articolo 1592587305
Quantità: Più di 20 disponibili
Da: Rarewaves USA United, OSWEGO, IL, U.S.A.
Paperback. Condizione: New. Third Edition. Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.What You'll LearnWork with vectors and matrices using NumPyReview Symbolic computing with SymPyPlot and visualize data with MatplotlibPerform data analysis tasks with Pandas and SciPyUnderstand statistical modeling and machine learning with statsmodels and scikit-learnOptimize Python code using Numba and CythonWho This Book Is ForDevelopers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis. Codice articolo LU-9798868804120
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 48295214-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 48295214
Quantità: Più di 20 disponibili
Da: Rarewaves.com UK, London, Regno Unito
Paperback. Condizione: New. Third Edition. Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis. After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.What You'll LearnWork with vectors and matrices using NumPyReview Symbolic computing with SymPyPlot and visualize data with MatplotlibPerform data analysis tasks with Pandas and SciPyUnderstand statistical modeling and machine learning with statsmodels and scikit-learnOptimize Python code using Numba and CythonWho This Book Is ForDevelopers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis. Codice articolo LU-9798868804120
Quantità: Più di 20 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis.After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.What You'll LearnWork with vectors and matrices using NumPyReview Symbolic computing with SymPyPlot and visualize data with MatplotlibPerform data analysis tasks with Pandas and SciPyUnderstand statistical modeling and machine learning with statsmodels and scikit-learnOptimize Python code using Numba and CythonWho This Book Is ForDevelopers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis. Codice articolo 9798868804120
Quantità: 2 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. Neuware -Learn how to leverage the scientific computing and data analysis capabilities of Python, its standard library, and popular open-source numerical Python packages like NumPy, SymPy, SciPy, matplotlib, and more. This book demonstrates how to work with mathematical modeling and solve problems with numerical, symbolic, and visualization techniques. It explores applications in science, engineering, data analytics, and more.Numerical Python, Third Edition, presents many case study examples of applications in fundamental scientific computing disciplines, as well as in data science and statistics. This fully revised edition, updated for each library's latest version, demonstrates Python's power for rapid development and exploratory computing due to its simple and high-level syntax and many powerful libraries and tools for computation and data analysis.After reading this book, readers will be familiar with many computing techniques, including array-based and symbolic computing, visualization and numerical file I/O, equation solving, optimization, interpolation and integration, and domain-specific computational problems, such as differential equation solving, data analysis, statistical modeling, and machine learning.What You'll LearnWork with vectors and matrices using NumPyReview Symbolic computing with SymPyPlot and visualize data with MatplotlibPerform data analysis tasks with Pandas and SciPyUnderstand statistical modeling and machine learning with statsmodels and scikit-learnOptimize Python code using Numba and CythonWho This Book Is ForDevelopers who want to understand how to use Python and its ecosystem of libraries for scientific computing and data analysis.APress in Springer Science + Business Media, Heidelberger Platz 3, 14197 Berlin 512 pp. Englisch. Codice articolo 9798868804120
Quantità: 2 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: As New. Unread book in perfect condition. Codice articolo 48295214
Quantità: Più di 20 disponibili