Articoli correlati a Hands-on Deep Learning: A Guide to Deep Learning with...

Hands-on Deep Learning: A Guide to Deep Learning with Projects and Applications - Brossura

 
9798868810343: Hands-on Deep Learning: A Guide to Deep Learning with Projects and Applications

Sinossi

This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios.

 

The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning,  providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT.

 

By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems.

 

What You Will Learn

  • What are deep neural networks?
  • What is transfer learning, multi-task learning, and end-to-end learning?
  • What are hyperparameters, bias, variance, and data division?
  • What are CNN and RNN?

 

Who This Book Is For

Machine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning

Le informazioni nella sezione "Riassunto" possono far riferimento a edizioni diverse di questo titolo.

Informazioni sull?autore

Harsh Bhasin is a researcher and practitioner. He has completed his PhD in Diagnosis and Conversion Prediction of Mild Cognitive Impairment Using Machine Learning from Jawaharlal Nehru University, New Delhi. He worked as a Deep Learning consultant for various firms and taught at various Universities, including Jamia Hamdard, and DTU. He is currently associated with Bennett University.

Harsh has authored 11 books, including Programming in C# and Algorithms. He has authored more than 40 papers that have been published in international conferences and renowned journals, including Alzheimer’s and Dementia, Soft Computing, Springer, BMC Medical Informatics & Decision Making, AI & Society, etc. He is the reviewer of a few renowned journals and has been the editor of a few special issues. He has been a recipient of Visvesvaraya Fellowship, Ministry of Electronics and Information Technology.

His areas of expertise include Deep Learning, Algorithms and Medical Imaging. Apart from his professional endeavours, he is deeply interested in Hindi Poetry: the progressive era and Hindustani Classical Music: percussion instruments.

Dalla quarta di copertina

This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios.

 

The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning,  providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT.

 

By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems.

 

What You Will Learn

  • What are deep neural networks?
  • What is transfer learning, multi-task learning, and end-to-end learning?
  • What are hyperparameters, bias, variance, and data division?
  • What are CNN and RNN?

 

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Compra usato

Condizioni: come nuovo
Unread book in perfect condition...
Visualizza questo articolo

EUR 17,16 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

EUR 7,73 per la spedizione da U.S.A. a Italia

Destinazione, tempi e costi

Risultati della ricerca per Hands-on Deep Learning: A Guide to Deep Learning with...

Foto dell'editore

Bhasin, Harsh
Editore: Apress, 2024
ISBN 13: 9798868810343
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9798868810343

Contatta il venditore

Compra nuovo

EUR 47,75
Convertire valuta
Spese di spedizione: EUR 7,73
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Harsh Bhasin
ISBN 13: 9798868810343
Nuovo Paperback

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios. The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning,  providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT. By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems. What You Will LearnWhat are deep neural networks?What is transfer learning, multi-task learning, and end-to-end learning?What are hyperparameters, bias, variance, and data division?What are CNN and RNN? Who This Book Is ForMachine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning. Codice articolo LU-9798868810343

Contatta il venditore

Compra nuovo

EUR 55,59
Convertire valuta
Spese di spedizione: EUR 3,43
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Harsh Bhasin
ISBN 13: 9798868810343
Nuovo Paperback

Da: Rarewaves USA United, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios. The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning,  providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT. By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems. What You Will LearnWhat are deep neural networks?What is transfer learning, multi-task learning, and end-to-end learning?What are hyperparameters, bias, variance, and data division?What are CNN and RNN? Who This Book Is ForMachine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning. Codice articolo LU-9798868810343

Contatta il venditore

Compra nuovo

EUR 57,51
Convertire valuta
Spese di spedizione: EUR 3,43
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Bhasin, Harsh
Editore: Apress, 2024
ISBN 13: 9798868810343
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 48400515

Contatta il venditore

Compra usato

EUR 45,01
Convertire valuta
Spese di spedizione: EUR 17,16
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Bhasin, Harsh
Editore: Apress, 2024
ISBN 13: 9798868810343
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 48400515-n

Contatta il venditore

Compra nuovo

EUR 45,29
Convertire valuta
Spese di spedizione: EUR 17,16
Da: U.S.A. a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Harsh Bhasin
ISBN 13: 9798868810343
Nuovo Paperback

Da: Rarewaves.com UK, London, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios. The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning,  providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT. By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems. What You Will LearnWhat are deep neural networks?What is transfer learning, multi-task learning, and end-to-end learning?What are hyperparameters, bias, variance, and data division?What are CNN and RNN? Who This Book Is ForMachine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning. Codice articolo LU-9798868810343

Contatta il venditore

Compra nuovo

EUR 63,70
Convertire valuta
Spese di spedizione: EUR 2,31
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Bhasin, Harsh
Editore: Apress, 2024
ISBN 13: 9798868810343
Antico o usato Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 48400515

Contatta il venditore

Compra usato

EUR 51,90
Convertire valuta
Spese di spedizione: EUR 17,31
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Harsh Bhasin
ISBN 13: 9798868810343
Nuovo Paperback

Da: Rarewaves.com USA, London, LONDO, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios. The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning,  providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT. By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems. What You Will LearnWhat are deep neural networks?What is transfer learning, multi-task learning, and end-to-end learning?What are hyperparameters, bias, variance, and data division?What are CNN and RNN? Who This Book Is ForMachine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning. Codice articolo LU-9798868810343

Contatta il venditore

Compra nuovo

EUR 68,77
Convertire valuta
Spese di spedizione: EUR 2,31
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Bhasin, Harsh
Editore: Apress, 2024
ISBN 13: 9798868810343
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 48400515-n

Contatta il venditore

Compra nuovo

EUR 57,50
Convertire valuta
Spese di spedizione: EUR 17,31
Da: Regno Unito a: Italia
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Harsh Bhasin
Editore: Apress, Apress Dez 2024, 2024
ISBN 13: 9798868810343
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book discusses deep learning, from its fundamental principles to its practical applications, with hands-on exercises and coding. It focuses on deep learning techniques and shows how to apply them across a wide range of practical scenarios.The book begins with an introduction to the core concepts of deep learning. It delves into topics such as transfer learning, multi-task learning, and end-to-end learning, providing insights into various deep learning models and their real-world applications. Next, it covers neural networks, progressing from single-layer perceptrons to multi-layer perceptrons, and solving the complexities of backpropagation and gradient descent. It explains optimizing model performance through effective techniques, addressing key considerations such as hyperparameters, bias, variance, and data division. It also covers convolutional neural networks (CNNs) through two comprehensive chapters, covering the architecture, components, and significance of kernels implementing well-known CNN models such as AlexNet and LeNet. It concludes with exploring autoencoders and generative models such as Hopfield Networks and Boltzmann Machines, applying these techniques to a diverse set of practical applications. These applications include image classification, object detection, sentiment analysis, COVID-19 detection, and ChatGPT.By the end of this book, you will have gained a thorough understanding of deep learning, from its fundamental principles to its innovative applications, enabling you to apply this knowledge to solve a wide range of real-world problems.What You Will LearnWhat are deep neural networks What is transfer learning, multi-task learning, and end-to-end learning What are hyperparameters, bias, variance, and data division What are CNN and RNN Who This Book Is ForMachine learning engineers, data scientists, AI practitioners, software developers, and engineers interested in deep learning 384 pp. Englisch. Codice articolo 9798868810343

Contatta il venditore

Compra nuovo

EUR 64,19
Convertire valuta
Spese di spedizione: EUR 11,00
Da: Germania a: Italia
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 6 copie di questo libro

Vedi tutti i risultati per questo libro