Adaptive and Multilevel Metaheuristics (Paperback)
Carlos Cotta
Venduto da Grand Eagle Retail, Bensenville, IL, U.S.A.
Venditore AbeBooks dal 12 ottobre 2005
Nuovi - Brossura
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrelloVenduto da Grand Eagle Retail, Bensenville, IL, U.S.A.
Venditore AbeBooks dal 12 ottobre 2005
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrelloPaperback. One of the keystones in practical metaheuristic problem-solving is the fact that tuning the optimization technique to the problem under consideration is crucial for achieving top performance. This tuning/customization is usually in the hands of the algorithm designer, and despite some methodological attempts, it largely remains a scientific art. Transferring a part of this customization effort to the algorithm itself -endowing it with smart mechanisms to self-adapt to the problem- has been a long pursued goal in the field of metaheuristics.These mechanisms can involve different aspects of the algorithm, such as for example, self-adjusting the parameters, self-adapting the functioning of internal components, evolving search strategies, etc.Recently, the idea of hyperheuristics, i.e., using a metaheuristic layer for adapting the search by selectively using different low-level heuristics, has also been gaining popularity. This volume presents recent advances in the area of adaptativeness in metaheuristic optimization, including up-to-date reviews of hyperheuristics and self-adaptation in evolutionary algorithms, as well as cutting edge works on adaptive, self-adaptive and multilevel metaheuristics, with application to both combinatorial and continuous optimization. This cutting edge volume presents recent advances in the area of adaptativeness in metaheuristic optimization. It includes up-to-date reviews of hyperheuristics and self-adaptation in evolutionary algorithms. Shipping may be from multiple locations in the US or from the UK, depending on stock availability.
Codice articolo 9783642098338
One of the keystones in practical metaheuristic problem-solving is the fact that tuning the optimization technique to the problem under consideration is crucial for achieving top performance. This tuning/customization is usually in the hands of the algorithm designer, and despite some methodological attempts, it largely remains a scientific art. Transferring a part of this customization effort to the algorithm itself -endowing it with smart mechanisms to self-adapt to the problem- has been a long pursued goal in the field of metaheuristics.
These mechanisms can involve different aspects of the algorithm, such as for example, self-adjusting the parameters, self-adapting the functioning of internal components, evolving search strategies, etc.
Recently, the idea of hyperheuristics, i.e., using a metaheuristic layer for adapting the search by selectively using different low-level heuristics, has also been gaining popularity. This volume presents recent advances in the area of adaptativeness in metaheuristic optimization, including up-to-date reviews of hyperheuristics and self-adaptation in evolutionary algorithms, as well as cutting edge works on adaptive, self-adaptive and multilevel metaheuristics, with application to both combinatorial and continuous optimization.
One of the keystones in practical metaheuristic problem-solving is the fact that tuning the optimization technique to the problem under consideration is crucial for achieving top performance. This tuning/customization is usually in the hands of the algorithm designer, and despite some methodological attempts, it largely remains a scientific art. Transferring a part of this customization effort to the algorithm itself -endowing it with smart mechanisms to self-adapt to the problem- has been a long pursued goal in the field of metaheuristics.
These mechanisms can involve different aspects of the algorithm, such as for example, self-adjusting the parameters, self-adapting the functioning of internal components, evolving search strategies, etc.
Recently, the idea of hyperheuristics, i.e., using a metaheuristic layer for adapting the search by selectively using different low-level heuristics, has also been gaining popularity. This volume presents recent advances in the area of adaptativeness in metaheuristic optimization, including up-to-date reviews of hyperheuristics and self-adaptation in evolutionary algorithms, as well as cutting edge works on adaptive, self-adaptive and multilevel metaheuristics, with application to both combinatorial and continuous optimization.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
We guarantee the condition of every book as it¿s described on the Abebooks web sites. If you¿ve changed
your mind about a book that you¿ve ordered, please use the Ask bookseller a question link to contact us
and we¿ll respond within 2 business days.
Books ship from California and Michigan.
Orders usually ship within 2 business days. All books within the US ship free of charge. Delivery is 4-14 business days anywhere in the United States.
Books ship from California and Michigan.
If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
Quantità dell?ordine | Da 6 a 16 giorni lavorativi | Da 6 a 14 giorni lavorativi |
---|---|---|
Primo articolo | EUR 0.00 | EUR 0.00 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.