Advances in K-means Clustering: A Data Mining Thinking
Wu, JunJie
Venduto da Revaluation Books, Exeter, Regno Unito
Venditore AbeBooks dal 6 gennaio 2003
Nuovi - Rilegato
Condizione: Nuovo
Quantità: 2 disponibili
Aggiungere al carrelloVenduto da Revaluation Books, Exeter, Regno Unito
Venditore AbeBooks dal 6 gennaio 2003
Condizione: Nuovo
Quantità: 2 disponibili
Aggiungere al carrello2012 edition. 194 pages. 9.25x6.25x0.50 inches. In Stock.
Codice articolo x-3642298060
Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China.
Nearly everyone knows K-means algorithm in the fields of data mining and business intelligence. But the ever-emerging data with extremely complicated characteristics bring new challenges to this "old" algorithm. This book addresses these challenges and makes novel contributions in establishing theoretical frameworks for K-means distances and K-means based consensus clustering, identifying the "dangerous" uniform effect and zero-value dilemma of K-means, adapting right measures for cluster validity, and integrating K-means with SVMs for rare class analysis. This book not only enriches the clustering and optimization theories, but also provides good guidance for the practical use of K-means, especially for important tasks such as network intrusion detection and credit fraud prediction. The thesis on which this book is based has won the "2010 National Excellent Doctoral Dissertation Award", the highest honor for not more than 100 PhD theses per year in China.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Legal entity name: Edward Bowditch Ltd
Legal entity form: Limited company
Business correspondence address: Exstowe, Exton, Exeter, EX3 0PP
Company registration number: 04916632
VAT registration: GB834241546
Authorised representative: Mr. E. Bowditch
Orders usually dispatched within two working days.
Quantità dell?ordine | Da 7 a 18 giorni lavorativi | Da 2 a 5 giorni lavorativi |
---|---|---|
Primo articolo | EUR 28.76 | EUR 28.76 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.