Advances in Probabilistic Graphical Models
Venduto da Books Puddle, New York, NY, U.S.A.
Venditore AbeBooks dal 22 novembre 2018
Nuovi - Brossura
Condizione: Nuovo
Quantità: 4 disponibili
Aggiungere al carrelloVenduto da Books Puddle, New York, NY, U.S.A.
Venditore AbeBooks dal 22 novembre 2018
Condizione: Nuovo
Quantità: 4 disponibili
Aggiungere al carrellopp. x + 396.
Codice articolo 263094240
In recent years considerable progress has been made in the area of probabilistic graphical models, in particular Bayesian networks and influence diagrams. Probabilistic graphical models have become mainstream in the area of uncertainty in artificial intelligence;
contributions to the area are coming from computer science, mathematics, statistics and engineering.
This carefully edited book brings together in one volume some of the most important topics of current research in probabilistic graphical modelling, learning from data and probabilistic inference. This includes topics such as the characterisation of conditional
independence, the sensitivity of the underlying probability distribution of a Bayesian network to variation in its parameters, the learning of graphical models with latent variables and extensions to the influence diagram formalism. In addition, attention is given to important application fields of probabilistic graphical models, such as the control of vehicles, bioinformatics and medicine.
In recent years considerable progress has been made in the area of probabilistic graphical models, in particular Bayesian networks and influence diagrams. Probabilistic graphical models have become mainstream in the area of uncertainty in artificial intelligence;
contributions to the area are coming from computer science, mathematics, statistics and engineering.
This carefully edited book brings together in one volume some of the most important topics of current research in probabilistic graphical modelling, learning from data and probabilistic inference. This includes topics such as the characterisation of conditional
independence, the sensitivity of the underlying probability distribution of a Bayesian network to variation in its parameters, the learning of graphical models with latent variables and extensions to the influence diagram formalism. In addition, attention is given to important application fields of probabilistic graphical models, such as the control of vehicles, bioinformatics and medicine.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
We accept return for those books which are received damamged. Though we take appropriate care in packaing to avoid such situation.
Quantità dell?ordine | Da 12 a 19 giorni lavorativi | Da 12 a 14 giorni lavorativi |
---|---|---|
Primo articolo | EUR 3.40 | EUR 5.95 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.