Algorithmic Learning Theory: 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings (Lecture Notes in Computer Science, 3244)

ISBN 10: 3540233563 ISBN 13: 9783540233565
Editore: Springer, 2004
Nuovi Brossura

Da Best Price, Torrance, CA, U.S.A. Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 30 agosto 2024

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

SUPER FAST SHIPPING. Codice articolo 9783540233565

Segnala questo articolo

Riassunto:

Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical ?elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the ?eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re?ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the ?eld, placing each of these topics in the general context of the ?eld. Formal models of automated learning re?ect various facets of the wide range of activities that can be viewed as learning. A ?rst dichotomy is between viewing learning as an inde?nite process and viewing it as a ?nite activity with a de?ned termination. Inductive Inference models focus on inde?nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion.

Contenuti: Invited Papers.- String Pattern Discovery.- Applications of Regularized Least Squares to Classification Problems.- Probabilistic Inductive Logic Programming.- Hidden Markov Modelling Techniques for Haplotype Analysis.- Learning, Logic, and Probability: A Unified View.- Regular Contributions.- Learning Languages from Positive Data and Negative Counterexamples.- Inductive Inference of Term Rewriting Systems from Positive Data.- On the Data Consumption Benefits of Accepting Increased Uncertainty.- Comparison of Query Learning and Gold-Style Learning in Dependence of the Hypothesis Space.- Learning r-of-k Functions by Boosting.- Boosting Based on Divide and Merge.- Learning Boolean Functions in AC 0 on Attribute and Classification Noise.- Decision Trees: More Theoretical Justification for Practical Algorithms.- Application of Classical Nonparametric Predictors to Learning Conditionally I.I.D. Data.- Complexity of Pattern Classes and Lipschitz Property.- On Kernels, Margins, and Low-Dimensional Mappings.- Estimation of the Data Region Using Extreme-Value Distributions.- Maximum Entropy Principle in Non-ordered Setting.- Universal Convergence of Semimeasures on Individual Random Sequences.- A Criterion for the Existence of Predictive Complexity for Binary Games.- Full Information Game with Gains and Losses.- Prediction with Expert Advice by Following the Perturbed Leader for General Weights.- On the Convergence Speed of MDL Predictions for Bernoulli Sequences.- Relative Loss Bounds and Polynomial-Time Predictions for the k-lms-net Algorithm.- On the Complexity of Working Set Selection.- Convergence of a Generalized Gradient Selection Approach for the Decomposition Method.- Newton Diagram and Stochastic Complexity in Mixture of Binomial Distributions.- Learnability of Relatively Quantified Generalized Formulas.- Learning Languages Generated by Elementary Formal Systems and Its Application to SH Languages.- New Revision Algorithms.- The Subsumption Lattice and Query Learning.- Learning of Ordered Tree Languages with Height-Bounded Variables Using Queries.- Learning Tree Languages from Positive Examples and Membership Queries.- Learning Content Sequencing in an Educational Environment According to Student Needs.- Tutorial Papers.- Statistical Learning in Digital Wireless Communications.- A BP-Based Algorithm for Performing Bayesian Inference in Large Perceptron-Type Networks.- Approximate Inference in Probabilistic Models.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Algorithmic Learning Theory: 15th ...
Casa editrice: Springer
Data di pubblicazione: 2004
Legatura: Brossura
Condizione: New

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Ben David, Shai [Editor]; Case, John [Editor]; Maruoka, Akira [Editor];
Editore: Springer, 2004
ISBN 10: 3540233563 ISBN 13: 9783540233565
Antico o usato Paperback

Da: GuthrieBooks, Spring Branch, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Very Good. We are unable to ship to Canada at this time.Ex-library paperback in very nice condition with the usual markings and attachments. Except for library markings, interior clean and unmarked. Tight binding. Codice articolo UTD1422823

Contatta il venditore

Compra usato

EUR 45,38
Spese di spedizione: EUR 6,06
In U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Ben-David, Shai|Case, John|Maruoka, Akira
ISBN 10: 3540233563 ISBN 13: 9783540233565
Nuovo Kartoniert / Broschiert
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also con. Codice articolo 4885875

Contatta il venditore

Compra nuovo

EUR 48,37
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Shai Ben David (u. a.)
Editore: Springer Berlin, 2004
ISBN 10: 3540233563 ISBN 13: 9783540233565
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Algorithmic Learning Theory | 15th International Conference, ALT 2004, Padova, Italy, October 2-5, 2004. Proceedings | Shai Ben David (u. a.) | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2004 | Springer Berlin | EAN 9783540233565 | Verantwortliche Person für die EU: Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, productsafety[at]springernature[dot]com | Anbieter: preigu. Codice articolo 102440328

Contatta il venditore

Compra nuovo

EUR 50,35
Spese di spedizione: EUR 70,00
Da: Germania a: U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Shai Ben David
ISBN 10: 3540233563 ISBN 13: 9783540233565
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the eld, placing each of these topics in the general context of the eld. Formal models of automated learning re ect various facets of the wide range of activities that can be viewed as learning. A rst dichotomy is between viewing learning as an inde nite process and viewing it as a nite activity with a de ned termination. Inductive Inference models focus on inde nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion. 528 pp. Englisch. Codice articolo 9783540233565

Contatta il venditore

Compra nuovo

EUR 53,49
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Shai Ben David
ISBN 10: 3540233563 ISBN 13: 9783540233565
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the eld, placing each of these topics in the general context of the eld. Formal models of automated learning re ect various facets of the wide range of activities that can be viewed as learning. A rst dichotomy is between viewing learning as an inde nite process and viewing it as a nite activity with a de ned termination. Inductive Inference models focus on inde nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion. Codice articolo 9783540233565

Contatta il venditore

Compra nuovo

EUR 53,49
Spese di spedizione: EUR 63,96
Da: Germania a: U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Shai Ben David
ISBN 10: 3540233563 ISBN 13: 9783540233565
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Algorithmic learning theory is mathematics about computer programs which learn from experience. This involves considerable interaction between various mathematical disciplines including theory of computation, statistics, and c- binatorics. There is also considerable interaction with the practical, empirical elds of machine and statistical learning in which a principal aim is to predict, from past data about phenomena, useful features of future data from the same phenomena. The papers in this volume cover a broad range of topics of current research in the eld of algorithmic learning theory. We have divided the 29 technical, contributed papers in this volume into eight categories (corresponding to eight sessions) re ecting this broad range. The categories featured are Inductive Inf- ence, Approximate Optimization Algorithms, Online Sequence Prediction, S- tistical Analysis of Unlabeled Data, PAC Learning & Boosting, Statistical - pervisedLearning,LogicBasedLearning,andQuery&ReinforcementLearning. Below we give a brief overview of the eld, placing each of these topics in the general context of the eld. Formal models of automated learning re ect various facets of the wide range of activities that can be viewed as learning. A rst dichotomy is between viewing learning as an inde nite process and viewing it as a nite activity with a de ned termination. Inductive Inference models focus on inde nite learning processes, requiring only eventual success of the learner to converge to a satisfactory conclusion. 528 pp. Englisch. Codice articolo 9783540233565

Contatta il venditore

Compra nuovo

EUR 53,49
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2004
ISBN 10: 3540233563 ISBN 13: 9783540233565
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020163608

Contatta il venditore

Compra nuovo

EUR 54,02
Spese di spedizione: EUR 3,46
In U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Ben-David, Shai (EDT); Case, John (EDT); Maruoka, Akira (EDT)
Editore: Springer, 2004
ISBN 10: 3540233563 ISBN 13: 9783540233565
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 3195666-n

Contatta il venditore

Compra nuovo

EUR 55,22
Spese di spedizione: EUR 2,29
In U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Ben-David, Shai (EDT); Case, John (EDT); Maruoka, Akira (EDT)
Editore: Springer, 2004
ISBN 10: 3540233563 ISBN 13: 9783540233565
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 3195666-n

Contatta il venditore

Compra nuovo

EUR 57,26
Spese di spedizione: EUR 16,98
Da: Regno Unito a: U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2004
ISBN 10: 3540233563 ISBN 13: 9783540233565
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783540233565_new

Contatta il venditore

Compra nuovo

EUR 57,27
Spese di spedizione: EUR 13,56
Da: Regno Unito a: U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 6 copie di questo libro

Vedi tutti i risultati per questo libro