Asymptotic Optimal Inference for Non-Ergodic Models

Basawa, Ishwar V.; Scott, David John

ISBN 10: 0387908102 ISBN 13: 9780387908106
Editore: Springer-Verlag New York Inc., 1983
Nuovi Brossura

Da Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 27 febbraio 2001

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Series: Lecture Notes in Statistics. Num Pages: 183 pages, biography. BIC Classification: PBT. Category: (P) Professional & Vocational. Dimension: 234 x 156 x 10. Weight in Grams: 294. . 1983. Softcover reprint of the original 1st ed. 1983. Paperback. . . . . Codice articolo V9780387908106

Segnala questo articolo

Riassunto:

This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape.

Contenuti: 0. An Over-view.- 1. Introduction.- 2. The Classical Fisher-Rao Model for Asymptotic Inference.- 3. Generalisation of the Fisher-Rao Model to Non-ergodic Type Processes.- 4. Mixture Experiments and Conditional Inference.- 5. Non-local Results.- 1. A General Model and Its Local Approximation.- 1. Introduction.- 2. LAMN Families.- 3. Consequences of the LAMN Condition.- 4. Sufficient Conditions for the LAMN Property.- 5. Asymptotic Sufficiency.- 6. An Example (Galton-Watson Branching Process).- 7. Bibliographical Notes.- 2. Efficiency of Estimation.- 1. Introduction.- 2. Asymptotic Structure of Limit Distributions of Sequences of Estimators.- 3. An Upper Bound for the Concentration.- 4. The Existence and Optimality of the Maximum Likelihood Estimators.- 5. Optimality of Bayes Estimators.- 6. Bibliographical Notes.- 3. Optimal Asymptotic Tests.- 1. Introduction.- 2. The Optimality Criteria: Definitions.- 3. An Efficient Test of Simple Hypotheses: Contiguous Alternatives.- 4. Local Efficiency and Asymptotic Power of the Score Statistic.- 5. Asymptotic Power of the Likelihood Ratio Test: Simple Hypothesis.- 6. Asymptotic Powers of the Score and LR Statistics for Composite Hypotheses with Nuisance Parameters.- 7. An Efficient Test of Composite Hypotheses with Contiguous Alternatives.- 8. Examples.- 9. Bibliographical Notes.- 4. Mixture Experiments and Conditional Inference.- 1. Introduction.- 2. Mixture of Exponential Families.- 3. Some Examples.- 4. Efficient Conditional Tests with Reference to L.- 5. Efficient Conditional Tests with Reference to L?.- 6. Efficient Conditional Tests with Reference to LC: Bahadur Efficiency.- 7. Efficiency of Conditional Maximum Likelihood Estimators.- 8. Conditional Tests for Markov Sequences and Their Mixtures.- 9. Some Heuristic Remarks about Conditional Inference for the General Model.- 10. Bibliographical Notes.- 5. Some Non-local Results.- 1. Introduction.- 2. Non-local Behaviour of the Likelihood Ratio.- 3. Examples.- 4. Non-local Efficiency Results for Simple Likelihood Ratio Tests.- 5. Bibiographical Notes.- Appendices.- A.1 Uniform and Continuous Convergence.- A.2 Contiguity of Probability Measures.- References.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Asymptotic Optimal Inference for Non-Ergodic...
Casa editrice: Springer-Verlag New York Inc.
Data di pubblicazione: 1983
Legatura: Brossura
Condizione: New

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Basawa, I. V.; Scott, D. J.
Editore: Springer, 1983
ISBN 10: 0387908102 ISBN 13: 9780387908106
Antico o usato Paperback

Da: ThriftBooks-Dallas, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Very Good. No Jacket. Former library book; May have limited writing in cover pages. Pages are unmarked. ~ ThriftBooks: Read More, Spend Less 0.6. Codice articolo G0387908102I4N10

Contatta il venditore

Compra usato

EUR 14,21
Spedizione gratuita
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Basawa, I. V.
Editore: Springer, 1983
ISBN 10: 0387908102 ISBN 13: 9780387908106
Antico o usato Brossura

Da: Phatpocket Limited, Waltham Abbey, HERTS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. Your purchase helps support Sri Lankan Children's Charity 'The Rainbow Centre'. Ex-library, so some stamps and wear, but in good overall condition. Our donations to The Rainbow Centre have helped provide an education and a safe haven to hundreds of children who live in appalling conditions. Codice articolo Z1-J-031-01664

Contatta il venditore

Compra usato

EUR 43,29
Spedizione EUR 12,26
Spedito da Regno Unito a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

I. V. Basawa|D. J. Scott
Editore: Springer New York, 1983
ISBN 10: 0387908102 ISBN 13: 9780387908106
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for as. Codice articolo 5911758

Contatta il venditore

Compra nuovo

EUR 92,27
Spedizione EUR 48,99
Spedito da Germania a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

I. V. Basawa (u. a.)
Editore: Springer, 1983
ISBN 10: 0387908102 ISBN 13: 9780387908106
Nuovo Taschenbuch
Print on Demand

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Asymptotic Optimal Inference for Non-ergodic Models | I. V. Basawa (u. a.) | Taschenbuch | xiii | Englisch | 1983 | Springer | EAN 9780387908106 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Codice articolo 107102196

Contatta il venditore

Compra nuovo

EUR 95,70
Spedizione EUR 70,00
Spedito da Germania a U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Basawa, I. V.; Scott, D. J.
Editore: Springer, 1983
ISBN 10: 0387908102 ISBN 13: 9780387908106
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Feb2215580173816

Contatta il venditore

Compra nuovo

EUR 102,54
Spedizione EUR 3,42
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

I. V. Basawa
ISBN 10: 0387908102 ISBN 13: 9780387908106
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape. 188 pp. Englisch. Codice articolo 9780387908106

Contatta il venditore

Compra nuovo

EUR 106,99
Spedizione EUR 23,00
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

D. J. Scott
ISBN 10: 0387908102 ISBN 13: 9780387908106
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 188 pp. Englisch. Codice articolo 9780387908106

Contatta il venditore

Compra nuovo

EUR 106,99
Spedizione EUR 60,00
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Basawa, I. V.; Scott, D. J.
Editore: Springer, 1983
ISBN 10: 0387908102 ISBN 13: 9780387908106
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9780387908106_new

Contatta il venditore

Compra nuovo

EUR 111,94
Spedizione EUR 13,81
Spedito da Regno Unito a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

D. J. Scott
ISBN 10: 0387908102 ISBN 13: 9780387908106
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This monograph contains a comprehensive account of the recent work of the authors and other workers on large sample optimal inference for non-ergodic models. The non-ergodic family of models can be viewed as an extension of the usual Fisher-Rao model for asymptotics, referred to here as an ergodic family. The main feature of a non-ergodic model is that the sample Fisher information, appropriately normed, converges to a non-degenerate random variable rather than to a constant. Mixture experiments, growth models such as birth processes, branching processes, etc. , and non-stationary diffusion processes are typical examples of non-ergodic models for which the usual asymptotics and the efficiency criteria of the Fisher-Rao-Wald type are not directly applicable. The new model necessitates a thorough review of both technical and qualitative aspects of the asymptotic theory. The general model studied includes both ergodic and non-ergodic families even though we emphasise applications of the latter type. The plan to write the monograph originally evolved through a series of lectures given by the first author in a graduate seminar course at Cornell University during the fall of 1978, and by the second author at the University of Munich during the fall of 1979. Further work during 1979-1981 on the topic has resolved many of the outstanding conceptual and technical difficulties encountered previously. While there are still some gaps remaining, it appears that the mainstream development in the area has now taken a more definite shape. Codice articolo 9780387908106

Contatta il venditore

Compra nuovo

EUR 112,77
Spedizione EUR 61,48
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Basawa, Ishwar V./ Scott, David John
Editore: Springer Verlag, 1983
ISBN 10: 0387908102 ISBN 13: 9780387908106
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 183 pages. 9.25x6.10x0.43 inches. In Stock. Codice articolo x-0387908102

Contatta il venditore

Compra nuovo

EUR 149,61
Spedizione EUR 11,53
Spedito da Regno Unito a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello