Automating the Design of Data Mining Algorithms: An Evolutionary Computation Approach (Natural Computing Series)

Pappa, Gisele L.; Freitas, Alex

ISBN 10: 3642261256 ISBN 13: 9783642261251
Editore: Springer, 2012
Nuovi Brossura

Da Ria Christie Collections, Uxbridge, Regno Unito Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 25 marzo 2015

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

In. Codice articolo ria9783642261251_new

Segnala questo articolo

Riassunto:

Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.

Recensione:

From the reviews:

"The book is targeted at researchers and postgraduate students. As the amount of data being mined continues to grow it demands ever more sophisticated mining algorithms. Therefore there is a need for new algorithms and so Pappa and Freitas’ book will be of interest particularly to researchers in data mining. ... [T]his book will appeal to the target audience of [the journal] Genetic Programming and Evolvable Machines and, I feel, will align with the research interests of its readership." (John Woodward, Genetic Programming and Evolvable Machines (2011) 12:81–83)

“The book will be useful for postgraduate students and researchers in the data mining field and in evolutionary computation.” (Florin Gorunescu, Zentralblatt MATH, Vol. 1183, 2010)

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Automating the Design of Data Mining ...
Casa editrice: Springer
Data di pubblicazione: 2012
Legatura: Brossura
Condizione: New

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Gisele L. Pappa|Alex Freitas
ISBN 10: 3642261256 ISBN 13: 9783642261251
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book proposes a different goal for evolutionary algorithms in data mining: to automate the design of a data mining algorithm, rather than just optimize its parameters.Data mining is a very active research area with many successful real-world. Codice articolo 5054199

Contatta il venditore

Compra nuovo

EUR 92,27
EUR 48,99 shipping
Spedito da Germania a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Pappa, Gisele L.; Freitas, Alex
Editore: Springer, 2012
ISBN 10: 3642261256 ISBN 13: 9783642261251
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020222100

Contatta il venditore

Compra nuovo

EUR 101,79
EUR 3,40 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alex Freitas
ISBN 10: 3642261256 ISBN 13: 9783642261251
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 204 pp. Englisch. Codice articolo 9783642261251

Contatta il venditore

Compra nuovo

EUR 106,99
EUR 60,00 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alex Freitas
ISBN 10: 3642261256 ISBN 13: 9783642261251
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future. Codice articolo 9783642261251

Contatta il venditore

Compra nuovo

EUR 106,99
EUR 61,59 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Alex Freitas
ISBN 10: 3642261256 ISBN 13: 9783642261251
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Data mining is a very active research area with many successful real-world app- cations. It consists of a set of concepts and methods used to extract interesting or useful knowledge (or patterns) from real-world datasets, providing valuable support for decision making in industry, business, government, and science. Although there are already many types of data mining algorithms available in the literature, it is still dif cult for users to choose the best possible data mining algorithm for their particular data mining problem. In addition, data mining al- rithms have been manually designed; therefore they incorporate human biases and preferences. This book proposes a new approach to the design of data mining algorithms. - stead of relying on the slow and ad hoc process of manual algorithm design, this book proposes systematically automating the design of data mining algorithms with an evolutionary computation approach. More precisely, we propose a genetic p- gramming system (a type of evolutionary computation method that evolves c- puter programs) to automate the design of rule induction algorithms, a type of cl- si cation method that discovers a set of classi cation rules from data. We focus on genetic programming in this book because it is the paradigmatic type of machine learning method for automating the generation of programs and because it has the advantage of performing a global search in the space of candidate solutions (data mining algorithms in our case), but in principle other types of search methods for this task could be investigated in the future. 204 pp. Englisch. Codice articolo 9783642261251

Contatta il venditore

Compra nuovo

EUR 106,99
EUR 23,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Pappa, Gisele L./ Freitas, Alex
ISBN 10: 3642261256 ISBN 13: 9783642261251
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 2010 edition. 200 pages. 9.25x6.10x0.46 inches. In Stock. Codice articolo x-3642261256

Contatta il venditore

Compra nuovo

EUR 148,55
EUR 11,39 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello