Building Smarter Models by Combining Probabilistic Graphical Models and Neural Networks: Hybrid PGM-Deep Learning Techniques in R

S. Yaya, Olaoluwa

ISBN 13: 9798262342167
Editore: Independently published, 2025
Nuovi Brossura

Da GreatBookPrices, Columbia, MD, U.S.A. Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 6 aprile 2009

Questa copia non è più disponibile. Ecco le corrispondenze migliori per Building Smarter Models by Combining Probabilistic Graphical Models and Neural Networks: Hybrid PGM-Deep Learning Techniques in R di S. Yaya, Olaoluwa.

Riguardo questo articolo

Descrizione:

Codice articolo 51338840-n

Segnala questo articolo

Riassunto:

In an era where data drives innovation, the boundaries of artificial intelligence are expanding rapidly. Building Smarter Models by Combining Probabilistic Graphical Models and Neural Networks: Hybrid PGM–Deep Learning Techniques in R introduces readers to a groundbreaking approach that unifies probabilistic reasoning with the representational power of neural networks.
This book is designed for researchers, data scientists, and advanced practitioners who seek to push beyond the limitations of traditional machine learning. Instead of treating probabilistic graphical models (PGMs) and deep learning as separate worlds, it explores how these two paradigms can be harmoniously combined to build smarter, more interpretable, and more robust AI systems.
Starting with the fundamentals of PGMs and neural architectures, the book gradually moves into hybrid modeling strategies where probabilistic inference complements neural representations. Readers are guided through real-world case studies implemented in R, demonstrating how these hybrid models can be used for classification, sequence modeling, causal inference, anomaly detection, reinforcement learning, and more.
The narrative style ensures that even complex mathematical and computational ideas are conveyed with clarity, making it accessible to both academic audiences and industry professionals. Alongside theory, the book provides practical hands-on examples, code snippets, and workflows in R, allowing readers to replicate and extend the techniques for their own projects.
Whether you are exploring Bayesian deep learning, probabilistic programming, or uncertainty-aware neural networks, this book offers a comprehensive roadmap to building AI systems that are not only powerful but also trustworthy. By the final chapters, readers will understand how hybrid PGM–neural network models can form the foundation for the next generation of AI—systems that learn, reason, and generalize with intelligence that mirrors human cognition more closely than ever before.
This is not just a technical manual, but a forward-looking guide for anyone passionate about the future of artificial intelligence.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Building Smarter Models by Combining ...
Casa editrice: Independently published
Data di pubblicazione: 2025
Legatura: Brossura
Condizione: New

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

M. Adepoju, Mary; S. Yaya, OlaOluwa; O. Ohue, Peter; A. Afolabi, Oluranti
Editore: Independently published, 2025
ISBN 13: 9798262342167
Nuovo Brossura
Print on Demand

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo I-9798262342167

Contatta il venditore

Compra nuovo

EUR 19,44
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello