Data Preprocessing in Data Mining
Salvador García
Venduto da AHA-BUCH GmbH, Einbeck, Germania
Venditore AbeBooks dal 14 agosto 2006
Nuovi - Rilegato
Condizione: Neu
Quantità: 1 disponibili
Aggiungere al carrelloVenduto da AHA-BUCH GmbH, Einbeck, Germania
Venditore AbeBooks dal 14 agosto 2006
Condizione: Neu
Quantità: 1 disponibili
Aggiungere al carrelloDruck auf Anfrage Neuware - Printed after ordering - Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.
Codice articolo 9783319102467
Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.
This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.
Data Preprocessing for Data Mining addresses one of the most important issues within the well-known Knowledge Discovery from Data process. Data directly taken from the source will likely have inconsistencies, errors or most importantly, it is not ready to be considered for a data mining process. Furthermore, the increasing amount of data in recent science, industry and business applications, calls to the requirement of more complex tools to analyze it. Thanks to data preprocessing, it is possible to convert the impossible into possible, adapting the data to fulfill the input demands of each data mining algorithm. Data preprocessing includes the data reduction techniques, which aim at reducing the complexity of the data, detecting or removing irrelevant and noisy elements from the data.
This book is intended to review the tasks that fill the gap between the data acquisition from the source and the data mining process. A comprehensive look from a practical point of view, including basic concepts and surveying the techniques proposed in the specialized literature, is given.Each chapter is a stand-alone guide to a particular data preprocessing topic, from basic concepts and detailed descriptions of classical algorithms, to an incursion of an exhaustive catalog of recent developments. The in-depth technical descriptions make this book suitable for technical professionals, researchers, senior undergraduate and graduate students in data science, computer science and engineering.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Termini e condizioni generali e informazioni sul cliente / Informativa sulla privacy
I. Condizioni generali di contratto
§ 1 Disposizioni di base
(1) I seguenti termini e condizioni si applicano a tutti i contratti che l'utente conclude con noi in qualità di fornitore (AHA-BUCH GmbH) tramite le piattaforme Internet AbeBooks e/o ZVAB. Se non diversamente concordato, l'inclusione di uno qualsiasi dei tuoi termini e condizioni da te utilizzati sarà contestata.
(2) Un consumatore ai sensi delle segu...
Spediamo il tuo ordine dopo averlo ricevuto
per articoli a portata di mano entro 24 ore,
per articoli con fornitura notturna entro 48 ore.
Nel caso in cui abbiamo bisogno di ordinare un articolo dal nostro fornitore, il nostro tempo di spedizione dipende dalla data di ricezione degli articoli, ma gli articoli verranno spediti lo stesso giorno.
Il nostro obiettivo è quello di inviare gli articoli ordinati nel modo più veloce, ma anche più efficiente e sicuro ai nostri clienti.