Data Science Essentials in Python
Dmitry Zinoviev
Venduto da PBShop.store UK, Fairford, GLOS, Regno Unito
Venditore AbeBooks dal 11 giugno 1999
Nuovi - Brossura
Condizione: Nuovo
Quantità: 15 disponibili
Aggiungere al carrelloVenduto da PBShop.store UK, Fairford, GLOS, Regno Unito
Venditore AbeBooks dal 11 giugno 1999
Condizione: Nuovo
Quantità: 15 disponibili
Aggiungere al carrelloNew Book. Shipped from UK. Established seller since 2000.
Codice articolo CW-9781680501841
Go from messy, unstructured artifacts stored in SQL and NoSQL databases to a neat, well-organized dataset with this quick reference for the busy data scientist. Understand text mining, machine learning, and network analysis; process numeric data with the NumPy and Pandas modules; describe and analyze data using statistical and network-theoretical methods; and see actual examples of data analysis at work. This one-stop solution covers the essential data science you need in Python.
Data science is one of the fastest-growing disciplines in terms of academic research, student enrollment, and employment. Python, with its flexibility and scalability, is quickly overtaking the R language for data-scientific projects. Keep Python data-science concepts at your fingertips with this modular, quick reference to the tools used to acquire, clean, analyze, and store data.
This one-stop solution covers essential Python, databases, network analysis, natural language processing, elements of machine learning, and visualization. Access structured and unstructured text and numeric data from local files, databases, and the Internet. Arrange, rearrange, and clean the data. Work with relational and non-relational databases, data visualization, and simple predictive analysis (regressions, clustering, and decision trees). See how typical data analysis problems are handled. And try your hand at your own solutions to a variety of medium-scale projects that are fun to work on and look good on your resume.
Keep this handy quick guide at your side whether you're a student, an entry-level data science professional converting from R to Python, or a seasoned Python developer who doesn't want to memorize every function and option.
What You Need:
You need a decent distribution of Python 3.3 or above that includes at least NLTK, Pandas, NumPy, Matplotlib, Networkx, SciKit-Learn, and BeautifulSoup. A great distribution that meets the requirements is Anaconda, available for free from www.continuum.io. If you plan to set up your own database servers, you also need MySQL (www.mysql.com) and MongoDB (www.mongodb.com). Both packages are free and run on Windows, Linux, and Mac OS.
Dmitry Zinoviev has an MS in Physics from Moscow State University and a PhD in Computer Science from Stony Brook University. His research interests include computer simulation and modeling, network science, social network analysis, and digital humanities. He has been teaching at Suffolk University in Boston, MA since 2001.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Returns Policy
We ask all customers to contact us for authorisation should they wish to return their order. Orders returned without authorisation may not be credited.
If you wish to return, please contact us within 14 days of receiving your order to obtain authorisation.
Returns requested beyond this time will not be authorised.
Our team will provide full instructions on how to return your order and once received our returns department will process your refund.
Please note the cost to return any...
Orders are shipped from our UK warehouse. Delivery thereafter is between 4 and 14 business days. Please contact us if you have any queries about our services or products.
Quantità dell?ordine | Da 10 a 17 giorni lavorativi | Da 10 a 17 giorni lavorativi |
---|---|---|
Primo articolo | EUR 5.78 | EUR 5.78 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.