Data mining for performance of vegetative filter strips | A comparison between prediction models : artificial neural networks (back propagation & radial basis function) vs. GRAPH

Sanyogita Andriyas

ISBN 10: 365950615X ISBN 13: 9783659506154
Editore: LAP LAMBERT Academic Publishing, 2013
Nuovi Taschenbuch

Da preigu, Osnabrück, Germania Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 5 agosto 2024

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Data mining for performance of vegetative filter strips | A comparison between prediction models : artificial neural networks (back propagation & radial basis function) vs. GRAPH | Sanyogita Andriyas | Taschenbuch | 216 S. | Englisch | 2013 | LAP LAMBERT Academic Publishing | EAN 9783659506154 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu. Codice articolo 105503771

Segnala questo articolo

Riassunto:

The vegetative filter strips (VFS) are a best management practice. For quantifying the movement & amount of sediments & nutrients, the performance of VFS has to be modeled. Data available from the literature & recent experiments were used. Artificial runoff was created. Flow samples were analysed for concentrations for total suspended solids, total phosphorus & soluble phosphorus, & particle size distribution. Input-output data sets were used to train & test a multi-layered perceptron using back propagation (BP) algorithm & a radial basis function neural network using fuzzy c-means clustering algorithm. Sensitivity tests were done for finding optimum architectures of neural networks. The statistical analysis & comparisons between predicted & observed values for the three models showed that a BP network with 15 hidden units can model the performance of VFS efficiently, including the trapping of soluble P. They could predict the outputs, even without the particle size distribution. ANN'S have to be trained before being used to predict the outputs. GRAPH is mobile & could be successfully used for verification, since it takes into account the physical processes going on.

L'autore: I have an expertise in machine learning techniques and their application in the field of water resources engineering and management.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Data mining for performance of vegetative ...
Casa editrice: LAP LAMBERT Academic Publishing
Data di pubblicazione: 2013
Legatura: Taschenbuch
Condizione: Neu

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Sanyogita Andriyas
ISBN 10: 365950615X ISBN 13: 9783659506154
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Andriyas SanyogitaI have an expertise in machine learning techniques and their application in the field of water resources engineering and management.The vegetative filter strips (VFS) are a best management practice. For quantify. Codice articolo 5160858

Contatta il venditore

Compra nuovo

EUR 61,85
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sanyogita Andriyas
ISBN 10: 365950615X ISBN 13: 9783659506154
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - The vegetative filter strips (VFS) are a best management practice. For quantifying the movement & amount of sediments & nutrients, the performance of VFS has to be modeled. Data available from the literature & recent experiments were used. Artificial runoff was created. Flow samples were analysed for concentrations for total suspended solids, total phosphorus & soluble phosphorus, & particle size distribution. Input-output data sets were used to train & test a multi-layered perceptron using back propagation (BP) algorithm & a radial basis function neural network using fuzzy c-means clustering algorithm. Sensitivity tests were done for finding optimum architectures of neural networks. The statistical analysis & comparisons between predicted & observed values for the three models showed that a BP network with 15 hidden units can model the performance of VFS efficiently, including the trapping of soluble P. They could predict the outputs, even without the particle size distribution. ANN'S have to be trained before being used to predict the outputs. GRAPH is mobile & could be successfully used for verification, since it takes into account the physical processes going on. Codice articolo 9783659506154

Contatta il venditore

Compra nuovo

EUR 76,90
Spese di spedizione: EUR 61,70
Da: Germania a: U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sanyogita Andriyas
ISBN 10: 365950615X ISBN 13: 9783659506154
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The vegetative filter strips (VFS) are a best management practice. For quantifying the movement & amount of sediments & nutrients, the performance of VFS has to be modeled. Data available from the literature & recent experiments were used. Artificial runoff was created. Flow samples were analysed for concentrations for total suspended solids, total phosphorus & soluble phosphorus, & particle size distribution. Input-output data sets were used to train & test a multi-layered perceptron using back propagation (BP) algorithm & a radial basis function neural network using fuzzy c-means clustering algorithm. Sensitivity tests were done for finding optimum architectures of neural networks. The statistical analysis & comparisons between predicted & observed values for the three models showed that a BP network with 15 hidden units can model the performance of VFS efficiently, including the trapping of soluble P. They could predict the outputs, even without the particle size distribution. ANN'S have to be trained before being used to predict the outputs. GRAPH is mobile & could be successfully used for verification, since it takes into account the physical processes going on.Books on Demand GmbH, Überseering 33, 22297 Hamburg 216 pp. Englisch. Codice articolo 9783659506154

Contatta il venditore

Compra nuovo

EUR 76,90
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Sanyogita Andriyas
ISBN 10: 365950615X ISBN 13: 9783659506154
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The vegetative filter strips (VFS) are a best management practice. For quantifying the movement & amount of sediments & nutrients, the performance of VFS has to be modeled. Data available from the literature & recent experiments were used. Artificial runoff was created. Flow samples were analysed for concentrations for total suspended solids, total phosphorus & soluble phosphorus, & particle size distribution. Input-output data sets were used to train & test a multi-layered perceptron using back propagation (BP) algorithm & a radial basis function neural network using fuzzy c-means clustering algorithm. Sensitivity tests were done for finding optimum architectures of neural networks. The statistical analysis & comparisons between predicted & observed values for the three models showed that a BP network with 15 hidden units can model the performance of VFS efficiently, including the trapping of soluble P. They could predict the outputs, even without the particle size distribution. ANN'S have to be trained before being used to predict the outputs. GRAPH is mobile & could be successfully used for verification, since it takes into account the physical processes going on. 216 pp. Englisch. Codice articolo 9783659506154

Contatta il venditore

Compra nuovo

EUR 76,90
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello