Deep Learning for Hyperspectral Image Analysis and Classification (Engineering Applications of Computational Methods, 5)

Tao, Linmi; Mughees, Atif

ISBN 10: 9813344199 ISBN 13: 9789813344198
Editore: Springer, 2021
Nuovi Rilegato

Da Ria Christie Collections, Uxbridge, Regno Unito Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 25 marzo 2015

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

In. Codice articolo ria9789813344198_new

Segnala questo articolo

Riassunto:

This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.

This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.


Informazioni sull?autore:

Linmi Tao received the B.S. degree in Biology from Zhejiang University, Zhejiang, China, the M.S. degree in Cognitive Science from the Chinese Academy of Sciences, Beijing, China, and the Ph.D. degree in Computer Science from Tsinghua University, Beijing. He is currently an Associate Professor with the Department of Computer Science and Technology, Tsinghua University. He has studied and worked with the International Institute for Advanced Scientific Studies and the University of Verona, Italy, and Tsinghua University on computational visual perception, 3D visual information processing, and computer vision. His research work covers a broad spectrum of computer vision, computational cognitive vision, and human-centered computing based on his cross-disciplinary background. Currently, his research is mainly focused on vision and machine learning areas, including deep learning based hyperspectral image processing, medical image processing, and visual scene understanding.

Atif Mughees received his B.E. and M.S. degree in Computer Software from the National University of Science and Technology Islamabad, Pakistan, in 2005 and 2009, respectively, and Ph.D. degree in Computer Vision and Deep Learning from the Key Laboratory of Pervasive Computing, Department of Computer Science and Technology, Tsinghua University, Beijing, China, in 2018. His research interests include image processing, remote sensing applications, and machine learning with a special focus on spectral and spatial techniques for hyperspectral image classification.


Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Deep Learning for Hyperspectral Image ...
Casa editrice: Springer
Data di pubblicazione: 2021
Legatura: Rilegato
Condizione: New

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Linmi Tao|Atif Mughees
Editore: Springer Singapore, 2021
ISBN 10: 9813344199 ISBN 13: 9789813344198
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Proposes adaptive-boundary adjustment-based noise detection and group-wise band categorization with unsupervised spectral-spatial adaptive band-noise factor-based formulationPresents unsupervised spectral-spatial adaptive boundary adjustmen. Codice articolo 418570414

Contatta il venditore

Compra nuovo

EUR 153,73
EUR 48,99 shipping
Spedito da Germania a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Linmi Tao (u. a.)
Editore: Springer, 2021
ISBN 10: 9813344199 ISBN 13: 9789813344198
Nuovo Rilegato
Print on Demand

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Deep Learning for Hyperspectral Image Analysis and Classification | Linmi Tao (u. a.) | Buch | xii | Englisch | 2021 | Springer | EAN 9789813344198 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Codice articolo 119103815

Contatta il venditore

Compra nuovo

EUR 159,50
EUR 70,00 shipping
Spedito da Germania a U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tao, Linmi; Mughees, Atif
Editore: Springer, 2021
ISBN 10: 9813344199 ISBN 13: 9789813344198
Nuovo Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 43225345-n

Contatta il venditore

Compra nuovo

EUR 174,95
EUR 2,24 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Linmi Tao
ISBN 10: 9813344199 ISBN 13: 9789813344198
Nuovo Rilegato

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9789813344198

Contatta il venditore

Compra nuovo

EUR 177,27
Spedizione gratuita
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Atif Mughees
ISBN 10: 9813344199 ISBN 13: 9789813344198
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 220 pp. Englisch. Codice articolo 9789813344198

Contatta il venditore

Compra nuovo

EUR 181,89
EUR 60,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Atif Mughees
ISBN 10: 9813344199 ISBN 13: 9789813344198
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends. 220 pp. Englisch. Codice articolo 9789813344198

Contatta il venditore

Compra nuovo

EUR 181,89
EUR 23,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Tao, Linmi; Mughees, Atif
Editore: Springer, 2021
ISBN 10: 9813344199 ISBN 13: 9789813344198
Nuovo Rilegato

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Apr0412070097208

Contatta il venditore

Compra nuovo

EUR 183,25
EUR 3,39 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Atif Mughees
ISBN 10: 9813344199 ISBN 13: 9789813344198
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book focuses on deep learning-based methods for hyperspectral image (HSI) analysis. Unsupervised spectral-spatial adaptive band-noise factor-based formulation is devised for HSI noise detection and band categorization. The method to characterize the bands along with the noise estimation of HSIs will benefit subsequent remote sensing techniques significantly.This book develops on two fronts: On the one hand, it is aimed at domain professionals who want to have an updated overview of how hyperspectral acquisition techniques can combine with deep learning architectures to solve specific tasks in different application fields. On the other hand, the authors want to target the machine learning and computer vision experts by giving them a picture of how deep learning technologies are applied to hyperspectral data from a multidisciplinary perspective. The presence of these two viewpoints and the inclusion of application fields of remote sensing by deep learning are theoriginal contributions of this review, which also highlights some potentialities and critical issues related to the observed development trends. Codice articolo 9789813344198

Contatta il venditore

Compra nuovo

EUR 188,08
EUR 62,50 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tao, Linmi; Mughees, Atif
Editore: Springer, 2021
ISBN 10: 9813344199 ISBN 13: 9789813344198
Nuovo Rilegato

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 43225345-n

Contatta il venditore

Compra nuovo

EUR 189,07
EUR 17,20 shipping
Spedito da Regno Unito a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tao, Linmi; Mughees, Atif
Editore: Springer, 2021
ISBN 10: 9813344199 ISBN 13: 9789813344198
Antico o usato Rilegato

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 43225345

Contatta il venditore

Compra usato

EUR 195,12
EUR 2,24 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Vedi altre 9 copie di questo libro

Vedi tutti i risultati per questo libro