Deep Learning for Information Fusion and Pattern Recognition
Venduto da AHA-BUCH GmbH, Einbeck, Germania
Venditore AbeBooks dal 14 agosto 2006
Nuovi - Rilegato
Condizione: Nuovo
Quantità: 2 disponibili
Aggiungere al carrelloVenduto da AHA-BUCH GmbH, Einbeck, Germania
Venditore AbeBooks dal 14 agosto 2006
Condizione: Nuovo
Quantità: 2 disponibili
Aggiungere al carrellonach der Bestellung gedruckt Neuware - Printed after ordering - There is a large amount of data from different types of sensors, for instance, multispectral electro-optical/infrared (EO/IR) and computed tomography/magnetic resonance (CT/MR) images, among others. How to take advantage of multimodal data for object detection and pattern recognition is an active field of research. Information fusion (IF) is used for enhancing the performance of pattern classification, while deep learning (DL) technologies, including convolutional neural networks (CNNs), are powerful tools for improving object detection, segmentation, and recognition. It is viable to combine DL and IF to boost the overall performance of pattern classification and target recognition. Such combinations of powerful techniques may exploit the deeply hidden features of the multimodal, spatial, or temporal data. This reprint presents cutting-edge research utilizing DL and IF techniques. Key research areas include image and video analysis, covering topics such as super-resolution, object detection, semantic segmentation, video captioning, and text processing, including labeling enhancement and screening misinformation. Biometric applications explore innovations in human identification using facial and finger vein recognition, facial micro-expression analysis, and fatigue detection. Advanced applications extend to handwritten recognition, tracking supermarket customer behavior, parcel sorting, predicting road surface conditions, and plastic waste classification.
Codice articolo 9783725830008
There is a large amount of data from different types of sensors, for instance, multispectral electro-optical/infrared (EO/IR) and computed tomography/magnetic resonance (CT/MR) images, among others. How to take advantage of multimodal data for object detection and pattern recognition is an active field of research. Information fusion (IF) is used for enhancing the performance of pattern classification, while deep learning (DL) technologies, including convolutional neural networks (CNNs), are powerful tools for improving object detection, segmentation, and recognition. It is viable to combine DL and IF to boost the overall performance of pattern classification and target recognition. Such combinations of powerful techniques may exploit the deeply hidden features of the multimodal, spatial, or temporal data. This reprint presents cutting-edge research utilizing DL and IF techniques. Key research areas include image and video analysis, covering topics such as super-resolution, object detection, semantic segmentation, video captioning, and text processing, including labeling enhancement and screening misinformation. Biometric applications explore innovations in human identification using facial and finger vein recognition, facial micro-expression analysis, and fatigue detection. Advanced applications extend to handwritten recognition, tracking supermarket customer behavior, parcel sorting, predicting road surface conditions, and plastic waste classification.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Termini e condizioni generali e informazioni sul cliente / Informativa sulla privacy
I. Condizioni generali di contratto
§ 1 Disposizioni di base
(1) I seguenti termini e condizioni si applicano a tutti i contratti che l'utente conclude con noi in qualità di fornitore (AHA-BUCH GmbH) tramite le piattaforme Internet AbeBooks e/o ZVAB. Se non diversamente concordato, l'inclusione di uno qualsiasi dei tuoi termini e condizioni da te utilizzati sarà contestata.
 (2) Un consumatore ai sensi delle segu...
Spediamo il tuo ordine dopo averlo ricevuto
per articoli a portata di mano entro 24 ore,
per articoli con fornitura notturna entro 48 ore.
Nel caso in cui abbiamo bisogno di ordinare un articolo dal nostro fornitore, il nostro tempo di spedizione dipende dalla data di ricezione degli articoli, ma gli articoli verranno spediti lo stesso giorno.
Il nostro obiettivo è quello di inviare gli articoli ordinati nel modo più veloce, ma anche più efficiente e sicuro ai nostri clienti.
| Quantità dell?ordine | Da 30 a 40 giorni lavorativi | Da 7 a 14 giorni lavorativi | 
|---|---|---|
| Primo articolo | EUR 64.20 | EUR 74.20 | 
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.





