Differential Inclusions : Set-Valued Maps and Viability Theory

Aubin, Jean-Pierre; Cellina, Arrigo

ISBN 10: 3642695140 ISBN 13: 9783642695148
Editore: Springer, 2012
Usato Brossura

Da GreatBookPrices, Columbia, MD, U.S.A. Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 6 aprile 2009

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Unread book in perfect condition. Codice articolo 18758121

Segnala questo articolo

Riassunto:

A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo "controlled" by parameters u(t) (the "controls"). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (*) are solutions to the "differen­ tial inclusion" (**) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (**), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a "maximal monotone" map. This class of inclusions contains the class of "gradient inclusions" which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable "potential". 2 Introduction There are many instances when potential functions are not differentiable.

Contenuti: 0. Background Notes.- 1. Continuous Partitions of Unity.- 2. Absolutely Continuous Functions.- 3. Some Compactness Theorems.- 4. Weak Convergence and Asymptotic Center of Bounded Sequences.- 5. Closed Convex Hulls and the Mean-Value Theorem.- 6. Lower Semicontinuous Convex Functions and Projections of Best Approximation.- 7. A Concise Introduction to Convex Analysis.- 1. Set-Valued Maps.- 1. Set-Valued Maps and Continuity Concepts.- 2. Examples of Set-Valued Maps.- 3. Continuity Properties of Maps with Closed Convex Graph.- 4. Upper Hemicontinuous Maps and the Convergence Theorem.- 5. Hausdorff Topology.- 6. The Selection Problem.- 7. The Minimal Selection.- 8. Chebishev Selection.- 9. The Barycentric Selection.- 10. Selection Theorems for Locally Selectionable Maps.- 11. Michael’s Selection Theorem.- 12. The Approximate Selection Theorem and Kakutani’s Fixed Point Theorem.- 13. (7-Selectionable Maps.- 14. Measurable Selections.- 2. Existence of Solutions to Differential Inclusions.- 1. Convex Valued Differential Inclusions.- 2. Qualitative Properties of the Set of Trajectories of Convex-Valued Differential Inclusions.- 3. Nonconvex-Valued Differential Inclusions.- 4. Differential Inclusions with Lipschitzean Maps and the Relaxation Theorem.- 5. The Fixed-Point Approach.- 6. The Lower Semicontinuous Case.- 3. Differential Inclusions with Maximal Monotone Maps.- 1. Maximal Monotone Maps.- 2. Existence and Uniqueness of Solutions to Differential Inclusions with Maximal Monotone Maps.- 3. Asymptotic Behavior of Trajectories and the Ergodic Theorem.- 4. Gradient Inclusions.- 5. Application: Gradient Methods for Constrained Minimization Problems.- 4. Viability Theory: The Nonconvex Case.- 1. Bouligand’s Contingent Cone.- 2. Viable and Monotone Trajectories.- 3. Contingent Derivative of a Set-Valued Map.- 4. The Time Dependent Case.- 5. A Continuous Version of Newton’s Method.- 6. A Viability Theorem for Continuous Maps with Nonconvex Images..- 7. Differential Inclusions with Memory.- 5. Viability Theory and Regulation of Controled Systems: The Convex Case.- 1. Tangent Cones and Normal Cones to Convex Sets.- 2. Viability Implies the Existence of an Equilibrium.- 3. Viability Implies the Existence of Periodic Trajectories.- 4. Regulation of Controled Systems Through Viability.- 5. Walras Equilibria and Dynamical Price Decentralization.- 6. Differential Variational Inequalities.- 7. Rate Equations and Inclusions.- 6. Liapunov Functions.- 1. Upper Contingent Derivative of a Real-Valued Function.- 2. Liapunov Functions and Existence of Equilibria.- 3. Monotone Trajectories of a Differential Inclusion.- 4. Construction of Liapunov Functions.- 5. Stability and Asymptotic Behavior of Trajectories.- Comments.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Differential Inclusions : Set-Valued Maps ...
Casa editrice: Springer
Data di pubblicazione: 2012
Legatura: Brossura
Condizione: As New

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

J.-P. Aubin|A. Cellina
ISBN 10: 3642695140 ISBN 13: 9783642695148
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. 0. Background Notes.- 1. Continuous Partitions of Unity.- 2. Absolutely Continuous Functions.- 3. Some Compactness Theorems.- 4. Weak Convergence and Asymptotic Center of Bounded Sequences.- 5. Closed Convex Hulls and the Mean-Value Theorem.- 6. Lower Semic. Codice articolo 5068306

Contatta il venditore

Compra nuovo

EUR 118,61
Convertire valuta
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

J. -P. Aubin (u. a.)
Editore: Springer, 2012
ISBN 10: 3642695140 ISBN 13: 9783642695148
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Differential Inclusions | Set-Valued Maps and Viability Theory | J. -P. Aubin (u. a.) | Taschenbuch | xiii | Englisch | 2012 | Springer | EAN 9783642695148 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 106331156

Contatta il venditore

Compra nuovo

EUR 122,85
Convertire valuta
Spese di spedizione: EUR 70,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Aubin, J.-P.; Cellina, A.
Editore: Springer, 2012
ISBN 10: 3642695140 ISBN 13: 9783642695148
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020234263

Contatta il venditore

Compra nuovo

EUR 130,94
Convertire valuta
Spese di spedizione: EUR 3,44
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

A. Cellina
ISBN 10: 3642695140 ISBN 13: 9783642695148
Nuovo Paperback

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo "controlled" by parameters u(t) (the "controls"). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (*) are solutions to the "differen- tial inclusion" (**) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (**), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a "maximal monotone" map.This class of inclusions contains the class of "gradient inclusions" which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable "potential". 2 Introduction There are many instances when potential functions are not differentiable. A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo "controlled" by parameters u(t) (the "controls"). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (*) are solutions to the "differenA tial inclusion" (**) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (**), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a "maximal monotone" map. This class of inclusions contains the class of "gradient inclusions" which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable "potential". 2 Introduction There are many instances when potential functions are not differentiable Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783642695148

Contatta il venditore

Compra nuovo

EUR 134,47
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Aubin, J.-P.; Cellina, A.
Editore: Springer, 2012
ISBN 10: 3642695140 ISBN 13: 9783642695148
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783642695148_new

Contatta il venditore

Compra nuovo

EUR 135,44
Convertire valuta
Spese di spedizione: EUR 13,80
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

A. Cellina
ISBN 10: 3642695140 ISBN 13: 9783642695148
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo 'controlled' by parameters u(t) (the 'controls'). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations ( ) are solutions to the 'differen tial inclusion' ( ) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion ( ), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a 'maximal monotone' map. This class of inclusions contains the class of 'gradient inclusions' which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable 'potential'. 2 Introduction There are many instances when potential functions are not differentiable. Codice articolo 9783642695148

Contatta il venditore

Compra nuovo

EUR 139,09
Convertire valuta
Spese di spedizione: EUR 62,76
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

A. Cellina
ISBN 10: 3642695140 ISBN 13: 9783642695148
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo 'controlled' by parameters u(t) (the 'controls'). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations (\*) are solutions to the 'differen tial inclusion' (\*\*) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion (\*\*), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a 'maximal monotone' map. This class of inclusions contains the class of 'gradient inclusions' which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable 'potential'. 2 Introduction There are many instances when potential functions are not differentiable.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 364 pp. Englisch. Codice articolo 9783642695148

Contatta il venditore

Compra nuovo

EUR 139,09
Convertire valuta
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

A. Cellina
ISBN 10: 3642695140 ISBN 13: 9783642695148
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -A great impetus to study differential inclusions came from the development of Control Theory, i.e. of dynamical systems x'(t) = f(t, x(t), u(t)), x(O)=xo 'controlled' by parameters u(t) (the 'controls'). Indeed, if we introduce the set-valued map F(t, x)= {f(t, x, u)}ueu then solutions to the differential equations ( ) are solutions to the 'differen tial inclusion' ( ) x'(t)EF(t, x(t)), x(O)=xo in which the controls do not appear explicitely. Systems Theory provides dynamical systems of the form d x'(t)=A(x(t)) dt (B(x(t))+ C(x(t)); x(O)=xo in which the velocity of the state of the system depends not only upon the x(t) of the system at time t, but also on variations of observations state B(x(t)) of the state. This is a particular case of an implicit differential equation f(t, x(t), x'(t)) = 0 which can be regarded as a differential inclusion ( ), where the right-hand side F is defined by F(t, x)= {vlf(t, x, v)=O}. During the 60's and 70's, a special class of differential inclusions was thoroughly investigated: those of the form X'(t)E - A(x(t)), x (0) =xo where A is a 'maximal monotone' map. This class of inclusions contains the class of 'gradient inclusions' which generalize the usual gradient equations x'(t) = -VV(x(t)), x(O)=xo when V is a differentiable 'potential'. 2 Introduction There are many instances when potential functions are not differentiable. 364 pp. Englisch. Codice articolo 9783642695148

Contatta il venditore

Compra nuovo

EUR 139,09
Convertire valuta
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Aubin, J.-P.; Cellina, A.
Editore: Springer, 2012
ISBN 10: 3642695140 ISBN 13: 9783642695148
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9783642695148

Contatta il venditore

Compra nuovo

EUR 161,60
Convertire valuta
Spese di spedizione: GRATIS
In U.S.A.
Destinazione, tempi e costi

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

J. -p. Aubin
ISBN 10: 3642695140 ISBN 13: 9783642695148
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. reprint edition. 355 pages. 9.00x6.10x0.90 inches. In Stock. Codice articolo x-3642695140

Contatta il venditore

Compra nuovo

EUR 193,13
Convertire valuta
Spese di spedizione: EUR 14,40
Da: Regno Unito a: U.S.A.
Destinazione, tempi e costi

Quantità: 2 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro