Direct Methods in the Theory of Elliptic Equations
Jindrich Necas
Venduto da AHA-BUCH GmbH, Einbeck, Germania
Venditore AbeBooks dal 14 agosto 2006
Nuovi - Rilegato
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrelloVenduto da AHA-BUCH GmbH, Einbeck, Germania
Venditore AbeBooks dal 14 agosto 2006
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrelloDruck auf Anfrage Neuware - Printed after ordering - Necas' book Direct Methods in the Theory of Elliptic Equations, published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Necas' work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library.The volume gives a self-contained presentation of the elliptic theory based on the 'direct method', also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame's system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which 'when going beyond the scalar equations of second order' turns out to be a very natural class. These choices reflect the author's opinion that the Lamesystem and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications.
Codice articolo 9783642104541
Necas’ book Direct Methods in the Theory of Elliptic Equations, published 1967 in French, has become a standard reference for the mathematical theory of linear elliptic equations and systems. This English edition, translated by G. Tronel and A. Kufner, presents Necas’ work essentially in the form it was published in 1967. It gives a timeless and in some sense definitive treatment of a number issues in variational methods for elliptic systems and higher order equations. The text is recommended to graduate students of partial differential equations, postdoctoral associates in Analysis, and scientists working with linear elliptic systems. In fact, any researcher using the theory of elliptic systems will benefit from having the book in his library.
The volume gives a self-contained presentation of the elliptic theory based on the "direct method", also known as the variational method. Due to its universality and close connections to numerical approximations, the variational method has become one of the most important approaches to the elliptic theory. The method does not rely on the maximum principle or other special properties of the scalar second order elliptic equations, and it is ideally suited for handling systems of equations of arbitrary order. The prototypical examples of equations covered by the theory are, in addition to the standard Laplace equation, Lame’s system of linear elasticity and the biharmonic equation (both with variable coefficients, of course). General ellipticity conditions are discussed and most of the natural boundary condition is covered. The necessary foundations of the function space theory are explained along the way, in an arguably optimal manner. The standard boundary regularity requirement on the domains is the Lipschitz continuity of the boundary, which "when going beyond the scalar equations of second order" turns out to be a very natural class. These choices reflect the author's opinion that the Lame system and the biharmonic equations are just as important as the Laplace equation, and that the class of the domains with the Lipschitz continuous boundary (as opposed to smooth domains) is the most natural class of domains to consider in connection with these equations and their applications.
Jindrich Necas, Professor Emeritus of the Charles University in Prague, Distinguished Researcher Professor at the University of Northern Illinois, DeKalb, Doctor Honoris Causa at the Technical University of Dresden, a leading Czech mathematician and a world-class researcher in the field of partial differential equations. Author or coauthor of 12 monographs, 7 textbooks, and 185 research papers. High points of his research include
In 1998 he was awarded the Order of Merit of the Czech Republic by President Václav Havel.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Termini e condizioni generali e informazioni sul cliente / Informativa sulla privacy
I. Condizioni generali di contratto
§ 1 Disposizioni di base
(1) I seguenti termini e condizioni si applicano a tutti i contratti che l'utente conclude con noi in qualità di fornitore (AHA-BUCH GmbH) tramite le piattaforme Internet AbeBooks e/o ZVAB. Se non diversamente concordato, l'inclusione di uno qualsiasi dei tuoi termini e condizioni da te utilizzati sarà contestata.
(2) Un consumatore ai sensi delle segu...
Spediamo il tuo ordine dopo averlo ricevuto
per articoli a portata di mano entro 24 ore,
per articoli con fornitura notturna entro 48 ore.
Nel caso in cui abbiamo bisogno di ordinare un articolo dal nostro fornitore, il nostro tempo di spedizione dipende dalla data di ricezione degli articoli, ma gli articoli verranno spediti lo stesso giorno.
Il nostro obiettivo è quello di inviare gli articoli ordinati nel modo più veloce, ma anche più efficiente e sicuro ai nostri clienti.
Quantità dell?ordine | Da 30 a 40 giorni lavorativi | Da 7 a 14 giorni lavorativi |
---|---|---|
Primo articolo | EUR 63.73 | EUR 73.73 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.