Distributed Machine Learning Patterns

Tang, Yuan

ISBN 10: 1617299022 ISBN 13: 9781617299025
Editore: Manning, 2024
Nuovi Brossura

Da ALLBOOKS1, Direk, SA, Australia Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 13 dicembre 2023

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Brand new book. Fast ship. Please provide full street address as we are not able to ship to P O box address. Codice articolo SHAK274500

Segnala questo articolo

Riassunto:

Practical patterns for scaling machine learning from your laptop to a distributed cluster.

Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. This book reveals best practice techniques and insider tips for tackling the challenges of scaling machine learning systems.

In Distributed Machine Learning Patterns you will learn how to:

  • Apply distributed systems patterns to build scalable and reliable machine learning projects
  • Build ML pipelines with data ingestion, distributed training, model serving, and more
  • Automate ML tasks with Kubernetes, TensorFlow, Kubeflow, and Argo Workflows
  • Make trade-offs between different patterns and approaches
  • Manage and monitor machine learning workloads at scale

Inside Distributed Machine Learning Patterns you’ll learn to apply established distributed systems patterns to machine learning projects—plus explore cutting-edge new patterns created specifically for machine learning. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Hands-on projects and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines.

Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications.

About the technology

Deploying a machine learning application on a modern distributed system puts the spotlight on reliability, performance, security, and other operational concerns. In this in-depth guide, Yuan Tang, project lead of Argo and Kubeflow, shares patterns, examples, and hard-won insights on taking an ML model from a single device to a distributed cluster.

About the book

Distributed Machine Learning Patterns provides dozens of techniques for designing and deploying distributed machine learning systems. In it, you’ll learn patterns for distributed model training, managing unexpected failures, and dynamic model serving. You’ll appreciate the practical examples that accompany each pattern along with a full-scale project that implements distributed model training and inference with autoscaling on Kubernetes.

What's inside

  • Data ingestion, distributed training, model serving, and more
  • Automating Kubernetes and TensorFlow with Kubeflow and Argo Workflows
  • Manage and monitor workloads at scale


About the reader

For data analysts and engineers familiar with the basics of machine learning, Bash, Python, and Docker.

About the author

Yuan Tang is a project lead of Argo and Kubeflow, maintainer of TensorFlow and XGBoost, and author of numerous open source projects.

Table of Contents

PART 1 BASIC CONCEPTS AND BACKGROUND
1 Introduction to distributed machine learning systems
PART 2 PATTERNS OF DISTRIBUTED MACHINE LEARNING SYSTEMS
2 Data ingestion patterns
3 Distributed training patterns
4 Model serving patterns
5 Workflow patterns
6 Operation patterns
PART 3 BUILDING A DISTRIBUTED MACHINE LEARNING WORKFLOW
7 Project overview and system architecture
8 Overview of relevant technologies
9 A complete implementation

Informazioni sull?autore: Yuan Tang is currently a founding engineer at Akuity. Previously he was a senior software engineer at Alibaba Group, building AI infrastructure and AutoML platforms on Kubernetes. Yuan is co-chair of Kubeflow, maintainer of Argo, TensorFlow, XGBoost, and Apache MXNet. He is the co-author of TensorFlow in Practice and author of the TensorFlow implementation of Dive into Deep Learning.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Distributed Machine Learning Patterns
Casa editrice: Manning
Data di pubblicazione: 2024
Legatura: Brossura
Condizione: nuovo

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Tang, Yuan
Editore: Simon and Schuster, 2024
ISBN 10: 1617299022 ISBN 13: 9781617299025
Antico o usato Brossura

Da: INDOO, Avenel, NJ, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread copy in mint condition. Codice articolo SS9781617299025

Contatta il venditore

Compra usato

EUR 44,73
Spedizione gratuita
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Tang, Yuan
Editore: Manning Publications, 2024
ISBN 10: 1617299022 ISBN 13: 9781617299025
Antico o usato Paperback

Da: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less. Codice articolo G1617299022I3N00

Contatta il venditore

Compra usato

EUR 44,79
Spedizione gratuita
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Tang, Yuan
Editore: Simon and Schuster, 2024
ISBN 10: 1617299022 ISBN 13: 9781617299025
Nuovo Brossura

Da: INDOO, Avenel, NJ, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Brand New. Codice articolo 9781617299025

Contatta il venditore

Compra nuovo

EUR 44,82
Spedizione gratuita
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Yuan Tang
Editore: Manning Publications, US, 2024
ISBN 10: 1617299022 ISBN 13: 9781617299025
Nuovo Paperback

Da: Rarewaves USA, OSWEGO, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: New. Practical patterns for scaling machine learning from your laptop to a distributed cluster. In  Distributed Machine Learning Patterns you will learn how to: Apply distributed systems patterns to build scalable and reliable machine learning projectsConstruct machine learning pipelines with data ingestion, distributed training, model serving, and moreAutomate machine learning tasks with Kubernetes, TensorFlow, Kubeflow, and Argo WorkflowsMake trade offs between different patterns and approachesManage and monitor machine learning workloads at scale Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters.  In Distributed Machine Learning Patterns, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In it, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines. about the technology Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. In this book, Kubeflow co-chair Yuan Tang shares patterns, techniques, and experience gained from years spent building and managing cutting-edge distributed machine learning infrastructure. about the book Distributed Machine Learning Patterns is filled with practical patterns for running machine learning systems on distributed Kubernetes clusters in the cloud. Each pattern is designed to help solve common challenges faced when building distributed machine learning systems, including supporting distributed model training, handling unexpected failures, and dynamic model serving traffic. Re. Codice articolo LU-9781617299025

Contatta il venditore

Compra nuovo

EUR 56,58
Spedizione gratuita
Spedito in U.S.A.

Quantità: 10 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tang, Yuan
Editore: Manning Publications, 2023
ISBN 10: 1617299022 ISBN 13: 9781617299025
Nuovo Brossura

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. &Uumlber den AutorYuan Tang&nbspis currently a founding engineer at Akuity. Previously he was a senior software engineer at Alibaba Group, building AI infrastructure and AutoML platforms on Kubernetes. Yuan is co-chair of Kubefl. Codice articolo 521395220

Contatta il venditore

Compra nuovo

EUR 62,43
EUR 48,99 shipping
Spedito da Germania a U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Tang, Yuan
Editore: Manning, 2024
ISBN 10: 1617299022 ISBN 13: 9781617299025
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26390183965

Contatta il venditore

Compra nuovo

EUR 64,57
EUR 3,40 shipping
Spedito in U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Tang, Yuan
Editore: Manning, 2024
ISBN 10: 1617299022 ISBN 13: 9781617299025
Nuovo Brossura

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 389415874

Contatta il venditore

Compra nuovo

EUR 64,88
EUR 7,43 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Tang, Yuan
Editore: Manning, 2024
ISBN 10: 1617299022 ISBN 13: 9781617299025
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 44369591-n

Contatta il venditore

Compra nuovo

EUR 65,75
EUR 2,25 shipping
Spedito in U.S.A.

Quantità: 20 disponibili

Aggiungi al carrello

Foto dell'editore

Yuan Tang
ISBN 10: 1617299022 ISBN 13: 9781617299025
Nuovo Paperback

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Practical patterns for scaling machine learning from your laptop to a distributed cluster. In Distributed Machine Learning Patterns you will learn how to: Apply distributed systems patterns to build scalable and reliable machine learning projectsConstruct machine learning pipelines with data ingestion, distributed training, model serving, and moreAutomate machine learning tasks with Kubernetes, TensorFlow, Kubeflow, and Argo WorkflowsMake trade offs between different patterns and approachesManage and monitor machine learning workloads at scale Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In Distributed Machine Learning Patterns, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines Distributed Machine Learning Patterns teaches you how to scale machine learning models from your laptop to large distributed clusters. In it, you'll learn how to apply established distributed systems patterns to machine learning projects, and explore new ML-specific patterns as well. Firmly rooted in the real world, this book demonstrates how to apply patterns using examples based in TensorFlow, Kubernetes, Kubeflow, and Argo Workflows. Real-world scenarios, hands-on projects, and clear, practical DevOps techniques let you easily launch, manage, and monitor cloud-native distributed machine learning pipelines. about the technology Scaling up models from standalone devices to large distributed clusters is one of the biggest challenges faced by modern machine learning practitioners. Distributing machine learning systems allow developers to handle extremely large datasets across multiple clusters, take advantage of automation tools, and benefit from hardware accelerations. In this book, Kubeflow co-chair Yuan Tang shares patterns, techniques, and experience gained from years spent building and managing cutting-edge distributed machine learning infrastructure. about the book Distributed Machine Learning Patterns is filled with practical patterns for running machine learning systems on distributed Kubernetes clusters in the cloud. Each pattern is designed to help solve common challenges faced when building distributed machine learning systems, including supporting distributed model training, handling unexpected failures, and dynamic model serving traffic. Real-world scenarios provide clear examples of how to apply each pattern, alongside the potential trade offs for each approach. Once you've mastered these cutting edge techniques, you'll put them all into practice and finish up by building a comprehensive distributed machine learning system. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9781617299025

Contatta il venditore

Compra nuovo

EUR 66,62
Spedizione gratuita
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Tang, Yuan
Editore: Manning, 2024
ISBN 10: 1617299022 ISBN 13: 9781617299025
Nuovo Brossura

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 18390183959

Contatta il venditore

Compra nuovo

EUR 66,79
EUR 9,95 shipping
Spedito da Germania a U.S.A.

Quantità: 4 disponibili

Aggiungi al carrello

Vedi altre 10 copie di questo libro

Vedi tutti i risultati per questo libro