Efficient Kernel Methods For Large Scale Classification | Scalable methods for training Support Vector Machines

Asharaf S

ISBN 10: 384654146X ISBN 13: 9783846541463
Editore: LAP LAMBERT Academic Publishing, 2011
Nuovi Taschenbuch

Da preigu, Osnabrück, Germania Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 5 agosto 2024

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Efficient Kernel Methods For Large Scale Classification | Scalable methods for training Support Vector Machines | Asharaf S | Taschenbuch | 132 S. | Englisch | 2011 | LAP LAMBERT Academic Publishing | EAN 9783846541463 | Verantwortliche Person für die EU: BoD - Books on Demand, In de Tarpen 42, 22848 Norderstedt, info[at]bod[dot]de | Anbieter: preigu Print on Demand. Codice articolo 106735434

Segnala questo articolo

Riassunto:

Classification algorithms have been widely used in many application domains. Most of these domains deal with massive collection of data and hence demand classification algorithms that scale well with the size of the data sets involved. A classification algorithm is said to be scalable if there is no significant increase in time and space requirements for the algorithm (without compromising the generalization performance) when dealing with an increase in the training set size. Support Vector Machine (SVM) is one of the most celebrated kernel based classification methods used in Machine Learning. An SVM capable of handling large scale classification problems will definitely be an ideal candidate in many real world applications. The training process involved in SVM classifier is usually formulated as a Quadratic Programing (QP) problem. The existing solution strategies for this problem have an associated time and space complexity that is (at least) quadratic in the number of training points. It makes SVM training very expensive. This thesis addresses the scalability of the training algorithms involved in SVM to make it feasible with large training data sets.

L'autore: Asharaf S is a faculty member in the IT&Systems area in IIM, Kozhikode, India. He received his PhD and Master of Engineering degrees from Indian Institute of Science, Bangalore. Prior to joining IIMK, he has been with America Online as a Research Scientist. He is a recipient of IBM Outstanding PhD student award.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Efficient Kernel Methods For Large Scale ...
Casa editrice: LAP LAMBERT Academic Publishing
Data di pubblicazione: 2011
Legatura: Taschenbuch
Condizione: Neu

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Asharaf S
ISBN 10: 384654146X ISBN 13: 9783846541463
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: S AsharafAsharaf S is a faculty member in the IT&Systems area in IIM, Kozhikode, India. He received his PhD and Master of Engineering degrees from Indian Institute of Science, Bangalore. Prior to joining IIMK, he has been with Americ. Codice articolo 5497818

Contatta il venditore

Compra nuovo

EUR 48,50
Spedizione EUR 48,99
Spedito da Germania a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Asharaf S
ISBN 10: 384654146X ISBN 13: 9783846541463
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - Classification algorithms have been widely used in many application domains. Most of these domains deal with massive collection of data and hence demand classification algorithms that scale well with the size of the data sets involved. A classification algorithm is said to be scalable if there is no significant increase in time and space requirements for the algorithm (without compromising the generalization performance) when dealing with an increase in the training set size. Support Vector Machine (SVM) is one of the most celebrated kernel based classification methods used in Machine Learning. An SVM capable of handling large scale classification problems will definitely be an ideal candidate in many real world applications. The training process involved in SVM classifier is usually formulated as a Quadratic Programing (QP) problem. The existing solution strategies for this problem have an associated time and space complexity that is (at least) quadratic in the number of training points. It makes SVM training very expensive. This thesis addresses the scalability of the training algorithms involved in SVM to make it feasible with large training data sets. Codice articolo 9783846541463

Contatta il venditore

Compra nuovo

EUR 59,00
Spedizione EUR 61,08
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Asharaf S
ISBN 10: 384654146X ISBN 13: 9783846541463
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Classification algorithms have been widely used in many application domains. Most of these domains deal with massive collection of data and hence demand classification algorithms that scale well with the size of the data sets involved. A classification algorithm is said to be scalable if there is no significant increase in time and space requirements for the algorithm (without compromising the generalization performance) when dealing with an increase in the training set size. Support Vector Machine (SVM) is one of the most celebrated kernel based classification methods used in Machine Learning. An SVM capable of handling large scale classification problems will definitely be an ideal candidate in many real world applications. The training process involved in SVM classifier is usually formulated as a Quadratic Programing (QP) problem. The existing solution strategies for this problem have an associated time and space complexity that is (at least) quadratic in the number of training points. It makes SVM training very expensive. This thesis addresses the scalability of the training algorithms involved in SVM to make it feasible with large training data sets. 132 pp. Englisch. Codice articolo 9783846541463

Contatta il venditore

Compra nuovo

EUR 59,00
Spedizione EUR 23,00
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Asharaf S
ISBN 10: 384654146X ISBN 13: 9783846541463
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -Classification algorithms have been widely used in many application domains. Most of these domains deal with massive collection of data and hence demand classification algorithms that scale well with the size of the data sets involved. A classification algorithm is said to be scalable if there is no significant increase in time and space requirements for the algorithm (without compromising the generalization performance) when dealing with an increase in the training set size. Support Vector Machine (SVM) is one of the most celebrated kernel based classification methods used in Machine Learning. An SVM capable of handling large scale classification problems will definitely be an ideal candidate in many real world applications. The training process involved in SVM classifier is usually formulated as a Quadratic Programing (QP) problem. The existing solution strategies for this problem have an associated time and space complexity that is (at least) quadratic in the number of training points. It makes SVM training very expensive. This thesis addresses the scalability of the training algorithms involved in SVM to make it feasible with large training data sets.Books on Demand GmbH, Überseering 33, 22297 Hamburg 132 pp. Englisch. Codice articolo 9783846541463

Contatta il venditore

Compra nuovo

EUR 59,00
Spedizione EUR 60,00
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Asharaf S
ISBN 10: 384654146X ISBN 13: 9783846541463
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 132 pages. 8.50x0.39x5.91 inches. In Stock. Codice articolo 384654146X

Contatta il venditore

Compra nuovo

EUR 119,81
Spedizione EUR 11,44
Spedito da Regno Unito a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello