Energy-Efficient Time-Domain Computation for Edge Devices: Challenges and Prospects (Paperback or Softback)

Al Maharmeh, Hamza

ISBN 10: 1638283567 ISBN 13: 9781638283560
Editore: Now Publishers 8/14/2024, 2024
Nuovi Paperback or Softback

Da BargainBookStores, Grand Rapids, MI, U.S.A. Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 23 gennaio 2002

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Energy-Efficient Time-Domain Computation for Edge Devices: Challenges and Prospects 0.22. Codice articolo BBS-9781638283560

Segnala questo articolo

Riassunto:

The increasing demand for high performance and energy efficiency in Artificial Neural Networks (ANNs) and Deep Learning (DL) accelerators has driven a wide range of application specific integrated circuits (ASICs). In recent years, this field has started to deviate from the conventional digital implementation of machine learning-based (ML) accelerators; instead, researchers have started to investigate implementation in the analog domain. This is due to two main reasons: better performance and lower power consumption. Analog processing has become more efficient than its digital counterparts, especially for Deep Neural Networks (DNNs), partly because emerging analog memory technologies have enabled local storage and processing known as compute in-memory (CIM), thereby reducing the amount of data movement between the memory and the processor. However, there are many challenges in the analog domain approach, such as the lack of a capable commercially available nonvolatile analog memory, and the analog domain is susceptible to variation and noise. Additionally, analog cores involve digital-to-analog converters (DACs) and analog-to-digital converters (ADCs), which consume up to 64% of total power consumption. An emerging trend has been to employ time-domain (TD) circuits to implement the multiply-accumulate (MAC) operation. TD cores require time-to-digital converters (TDCs) and digital-to-time converters (DTCs). However, DTC and TDC can be more energy and area efficient than DAC and ADC. TD accelerators leverage both digital and analog features, thereby enabling energy-efficient computing and scaling with complementary metal–oxide–semiconductor (CMOS) technology. The performance of TD accelerators can be substantially improved if custom-designed analog delay cells, DTC, and TDC are used. This monograph reviews state-of-the-art TD accelerators and discusses system considerations and hardware implementations. Additionally, the work analyzes the energy and area efficiency of the TD architectures, including spatially unrolled (SU) and recursive (REC) architectures, for varying input resolutions and network sizes to provide insight for designers into how to choose the appropriate TD approach for a particular application. The monograph also discusses an implemented scalable SU-TD accelerator synthesized in 65nm CMOS technology, and concludes with the limitations of time-domain computation and future work.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Energy-Efficient Time-Domain Computation for...
Casa editrice: Now Publishers 8/14/2024
Data di pubblicazione: 2024
Legatura: Paperback or Softback
Condizione: New
Tipologia articolo: Book

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Al Maharmeh, Hamza; Alhawari, Mohammad; Ismail, Mohammed
Editore: Now Publishers Inc, 2024
ISBN 10: 1638283567 ISBN 13: 9781638283560
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | The increasing demand for high performance and energy efficiency in Artificial Neural Networks (ANNs) and Deep Learning (DL) accelerators has driven a wide range of application specific integrated circuits (ASICs). In recent years, this field has started to deviate from the conventional digital implementation of machine learning-based (ML) accelerators; instead, researchers have started to investigate implementation in the analog domain. This is due to two main reasons: better performance and lower power consumption. Analog processing has become more efficient than its digital counterparts, especially for Deep Neural Networks (DNNs), partly because emerging analog memory technologies have enabled local storage and processing known as compute in-memory (CIM), thereby reducing the amount of data movement between the memory and the processor. However, there are many challenges in the analog domain approach, such as the lack of a capable commercially available nonvolatile analog memory, and the analog domain is susceptible to variation and noise. Additionally, analog cores involve digital-to-analog converters (DACs) and analog-to-digital converters (ADCs), which consume up to 64% of total power consumption. An emerging trend has been to employ time-domain (TD) circuits to implement the multiply-accumulate (MAC) operation. TD cores require time-to-digital converters (TDCs) and digital-to-time converters (DTCs). However, DTC and TDC can be more energy and area efficient than DAC and ADC. TD accelerators leverage both digital and analog features, thereby enabling energy-efficient computing and scaling with complementary metal-oxide-semiconductor (CMOS) technology. The performance of TD accelerators can be substantially improved if custom-designed analog delay cells, DTC, and TDC are used. This monograph reviews state-of-the-art TD accelerators and discusses system considerations and hardware implementations. Additionally, the work analyzes the energy and area efficiency of the TD architectures, including spatially unrolled (SU) and recursive (REC) architectures, for varying input resolutions and network sizes to provide insight for designers into how to choose the appropriate TD approach for a particular application. The monograph also discusses an implemented scalable SU-TD accelerator synthesized in 65nm CMOS technology, and concludes with the limitations of time-domain computation and future work. Codice articolo 42803733/1

Contatta il venditore

Compra usato

EUR 34,33
EUR 105,00 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Al Maharmeh, Hamza; Ismail, Mohammed; Alhawari, Mohammad
Editore: Now Publishers, 2024
ISBN 10: 1638283567 ISBN 13: 9781638283560
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 26402455347

Contatta il venditore

Compra nuovo

EUR 79,35
EUR 3,40 shipping
Spedito in U.S.A.

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Al Maharmeh, Hamza; Ismail, Mohammed; Alhawari, Mohammad
Editore: Now Publishers, 2024
ISBN 10: 1638283567 ISBN 13: 9781638283560
Nuovo Brossura
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 395003116

Contatta il venditore

Compra nuovo

EUR 82,76
EUR 7,42 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Al Maharmeh, Hamza; Ismail, Mohammed; Alhawari, Mohammad
Editore: Now Publishers, 2024
ISBN 10: 1638283567 ISBN 13: 9781638283560
Nuovo Brossura
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND. Codice articolo 18402455353

Contatta il venditore

Compra nuovo

EUR 85,10
EUR 9,95 shipping
Spedito da Germania a U.S.A.

Quantità: 4 disponibili

Aggiungi al carrello