Enhancing Surrogate-Based Optimization Through Parallelization

Rehbach, Frederik

ISBN 10: 3031306104 ISBN 13: 9783031306105
Editore: Springer, 2023
Nuovi Brossura

Da Ria Christie Collections, Uxbridge, Regno Unito Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 25 marzo 2015

Questa copia non è più disponibile. Ecco le corrispondenze migliori per Enhancing Surrogate-Based Optimization Through Parallelization di Rehbach, Frederik.

Riguardo questo articolo

Descrizione:

In. Codice articolo ria9783031306105_new

Segnala questo articolo

Riassunto:

This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.

Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.

Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Enhancing Surrogate-Based Optimization ...
Casa editrice: Springer
Data di pubblicazione: 2023
Legatura: Brossura
Condizione: New

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Rehbach, Frederik
Editore: Springer, 2023
ISBN 10: 3031306082 ISBN 13: 9783031306082
Antico o usato Rilegato

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently. Codice articolo 41769024/1

Contatta il venditore

Compra usato

EUR 91,76
EUR 105,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Rehbach, Frederik
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (S. Codice articolo 834045565

Contatta il venditore

Compra nuovo

EUR 153,73
EUR 48,99 shipping
Spedito da Germania a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Rehbach, Frederik
ISBN 10: 3031306112 ISBN 13: 9783031306112
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (S. Codice articolo 1689479571

Contatta il venditore

Compra nuovo

EUR 153,73
EUR 48,99 shipping
Spedito da Germania a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frederik Rehbach
Editore: Springer, 2024
ISBN 10: 3031306112 ISBN 13: 9783031306112
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Enhancing Surrogate-Based Optimization Through Parallelization | Frederik Rehbach | Taschenbuch | x | Englisch | 2024 | Springer | EAN 9783031306112 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 129348712

Contatta il venditore

Compra nuovo

EUR 155,95
EUR 70,00 shipping
Spedito da Germania a U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frederik Rehbach
Editore: Springer, 2023
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato
Print on Demand

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Enhancing Surrogate-Based Optimization Through Parallelization | Frederik Rehbach | Buch | x | Englisch | 2023 | Springer | EAN 9783031306082 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Codice articolo 126716880

Contatta il venditore

Compra nuovo

EUR 159,50
EUR 70,00 shipping
Spedito da Germania a U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frederik Rehbach
ISBN 10: 3031306112 ISBN 13: 9783031306112
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 128 pp. Englisch. Codice articolo 9783031306112

Contatta il venditore

Compra nuovo

EUR 181,89
EUR 60,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frederik Rehbach
ISBN 10: 3031306112 ISBN 13: 9783031306112
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently. 128 pp. Englisch. Codice articolo 9783031306112

Contatta il venditore

Compra nuovo

EUR 181,89
EUR 23,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frederik Rehbach
ISBN 10: 3031306112 ISBN 13: 9783031306112
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently. Codice articolo 9783031306112

Contatta il venditore

Compra nuovo

EUR 181,89
EUR 61,15 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frederik Rehbach
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 128 pp. Englisch. Codice articolo 9783031306082

Contatta il venditore

Compra nuovo

EUR 181,89
EUR 60,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frederik Rehbach
ISBN 10: 3031306082 ISBN 13: 9783031306082
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents a solution to the challenging issue of optimizing expensive-to-evaluate industrial problems such as the hyperparameter tuning of machine learning models. The approach combines two well-established concepts, Surrogate-Based Optimization (SBO) and parallelization, to efficiently search for optimal parameter setups with as few function evaluations as possible.Through in-depth analysis, the need for parallel SBO solvers is emphasized, and it is demonstrated that they outperform model-free algorithms in scenarios with a low evaluation budget. The SBO approach helps practitioners save significant amounts of time and resources in hyperparameter tuning as well as other optimization projects. As a highlight, a novel framework for objectively comparing the efficiency of parallel SBO algorithms is introduced, enabling practitioners to evaluate and select the most effective approach for their specific use case.Based on practical examples, decision support is delivered, detailing which parts of industrial optimization projects can be parallelized and how to prioritize which parts to parallelize first. By following the framework, practitioners can make informed decisions about how to allocate resources and optimize their models efficiently. Codice articolo 9783031306082

Contatta il venditore

Compra nuovo

EUR 181,89
EUR 61,95 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 10 copie di questo libro

Vedi tutti i risultati per questo libro