Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning

Uday Kamath (u. a.)

ISBN 10: 3030833585 ISBN 13: 9783030833589
Editore: Springer, 2022
Nuovi Taschenbuch

Da preigu, Osnabrück, Germania Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 5 agosto 2024

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Explainable Artificial Intelligence: An Introduction to Interpretable Machine Learning | Uday Kamath (u. a.) | Taschenbuch | xxiii | Englisch | 2022 | Springer | EAN 9783030833589 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Codice articolo 125848503

Segnala questo articolo

Riassunto:

This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great urce for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal urce for the courses I teach, and strongly recommend it to my students.       
--Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMU

This book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning.
--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYU


This is a wonderful book! I’m pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I’ve seen that has up-to-date and well-rounded coverage. Thank you to the authors!
--Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics

 
Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Explainable Artificial Intelligence: An ...
Casa editrice: Springer
Data di pubblicazione: 2022
Legatura: Taschenbuch
Condizione: Neu

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Kamath, Uday|Liu, John
ISBN 10: 3030833585 ISBN 13: 9783030833589
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and . Codice articolo 761710339

Contatta il venditore

Compra nuovo

EUR 127,40
Spedizione EUR 48,99
Spedito da Germania a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Kamath, Uday; Liu, John
Editore: Springer, 2022
ISBN 10: 3030833585 ISBN 13: 9783030833589
Nuovo Brossura

Da: Ria Christie Collections, Uxbridge, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. In. Codice articolo ria9783030833589_new

Contatta il venditore

Compra nuovo

EUR 135,77
Spedizione EUR 13,82
Spedito da Regno Unito a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Kamath, Uday/ Liu, John
Editore: Springer, 2022
ISBN 10: 3030833585 ISBN 13: 9783030833589
Nuovo Paperback
Print on Demand

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 333 pages. 9.25x6.10x0.91 inches. In Stock. This item is printed on demand. Codice articolo __3030833585

Contatta il venditore

Compra nuovo

EUR 142,52
Spedizione EUR 14,42
Spedito da Regno Unito a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Uday Kamath
ISBN 10: 3030833585 ISBN 13: 9783030833589
Nuovo Paperback

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMUThis book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning.--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYUThis is a wonderful book! Im pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book Ive seen that has up-to-date and well-rounded coverage. Thank you to the authors!--Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level.Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist.Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder ofExplainable AI-XAI Group Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783030833589

Contatta il venditore

Compra nuovo

EUR 146,43
Spedizione gratuita
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

John Liu
ISBN 10: 3030833585 ISBN 13: 9783030833589
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMUThis book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning.--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYUThis is a wonderful book! I'm pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I've seen that has up-to-date and well-rounded coverage. Thank you to the authors!--Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & BioinformaticsLiterature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, not Elektronisches Buch with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level.Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist.Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder ofExplainable AI-XAI Group 336 pp. Englisch. Codice articolo 9783030833589

Contatta il venditore

Compra nuovo

EUR 149,79
Spedizione EUR 23,00
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

John Liu
ISBN 10: 3030833585 ISBN 13: 9783030833589
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMUThis book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning.--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYUThis is a wonderful book! I'm pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book I've seen that has up-to-date and well-rounded coverage. Thank you to the authors!--Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & BioinformaticsLiterature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, not Elektronisches Buch with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level.Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist.Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder ofExplainable AI-XAI Group. Codice articolo 9783030833589

Contatta il venditore

Compra nuovo

EUR 149,79
Spedizione EUR 62,56
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

John Liu
ISBN 10: 3030833585 ISBN 13: 9783030833589
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 336 pp. Englisch. Codice articolo 9783030833589

Contatta il venditore

Compra nuovo

EUR 149,79
Spedizione EUR 60,00
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Kamath, Uday
Editore: Springer, 2022
ISBN 10: 3030833585 ISBN 13: 9783030833589
Nuovo Brossura

Da: Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo V9783030833589

Contatta il venditore

Compra nuovo

EUR 185,29
Spedizione EUR 10,50
Spedito da Irlanda a U.S.A.

Quantità: 15 disponibili

Aggiungi al carrello

Foto dell'editore

Kamath, Uday; Liu, John
Editore: Springer, 2022
ISBN 10: 3030833585 ISBN 13: 9783030833589
Nuovo Brossura

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 1st ed. 2021 edition NO-PA16APR2015-KAP. Codice articolo 26396291975

Contatta il venditore

Compra nuovo

EUR 190,36
Spedizione EUR 3,43
Spedito in U.S.A.

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Uday Kamath
ISBN 10: 3030833585 ISBN 13: 9783030833589
Nuovo Paperback

Da: AussieBookSeller, Truganina, VIC, Australia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. This book is written both for readers entering the field, and for practitioners with a background in AI and an interest in developing real-world applications. The book is a great resource for practitioners and researchers in both industry and academia, and the discussed case studies and associated material can serve as inspiration for a variety of projects and hands-on assignments in a classroom setting. I will certainly keep this book as a personal resource for the courses I teach, and strongly recommend it to my students. --Dr. Carlotta Domeniconi, Associate Professor, Computer Science Department, GMUThis book offers a curriculum for introducing interpretability to machine learning at every stage. The authors provide compelling examples that a core teaching practice like leading interpretive discussions can be taught and learned by teachers and sustained effort. And what better way to strengthen the quality of AI and Machine learning outcomes. I hope that this book will become a primer for teachers, data Science educators, and ML developers, and together we practice the art of interpretive machine learning.--Anusha Dandapani, Chief Data and Analytics Officer, UNICC and Adjunct Faculty, NYUThis is a wonderful book! Im pleased that the next generation of scientists will finally be able to learn this important topic. This is the first book Ive seen that has up-to-date and well-rounded coverage. Thank you to the authors!--Dr. Cynthia Rudin, Professor of Computer Science, Electrical and Computer Engineering, Statistical Science, and Biostatistics & Bioinformatics Literature on Explainable AI has up until now been relatively scarce and featured mainly mainstream algorithms like SHAP and LIME. This book has closed this gap by providing an extremely broad review of various algorithms proposed in the scientific circles over the previous 5-10 years. This book is a great guide to anyone who is new to the field of XAI or is already familiar with the field and is willing to expand their knowledge. A comprehensive review of the state-of-the-art Explainable AI methods starting from visualization, interpretable methods, local and global explanations, time series methods, and finishing with deep learning provides an unparalleled source of information currently unavailable anywhere else. Additionally, notebooks with vivid examples are a great supplement that makes the book even more attractive for practitioners of any level.Overall, the authors provide readers with an enormous breadth of coverage without losing sight of practical aspects, which makes this book truly unique and a great addition to the library of any data scientist.Dr. Andrey Sharapov, Product Data Scientist, Explainable AI Expert and Speaker, Founder ofExplainable AI-XAI Group Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Codice articolo 9783030833589

Contatta il venditore

Compra nuovo

EUR 202,68
Spedizione EUR 31,78
Spedito da Australia a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 4 copie di questo libro

Vedi tutti i risultati per questo libro