Da
AHA-BUCH GmbH, Einbeck, Germania
Valutazione del venditore 5 su 5 stelle
Venditore AbeBooks dal 14 agosto 2006
Neuware - Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo rem, a classical result from field theory, stating that in every finite dimen sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very useful for doing arithmetic computations, at present, the algorithmic and explicit construction of (particular) such bases has become one of the major research topics in Finite Field Theory. Codice articolo 9780792398516
Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptography. A look at the topics of the proceed ings volume of the Third International Conference on Finite Fields and Their Applications (Glasgow, 1995) (see [18]), or at the list of references in I. E. Shparlinski's book [47] (a recent extensive survey on the Theory of Finite Fields with particular emphasis on computational aspects), shows that the area of Finite Fields goes through a tremendous development. The central topic of the present text is the famous Normal Basis Theo rem, a classical result from field theory, stating that in every finite dimen sional Galois extension E over F there exists an element w whose conjugates under the Galois group of E over F form an F-basis of E (i. e. , a normal basis of E over F; w is called free in E over F). For finite fields, the Nor mal Basis Theorem has first been proved by K. Hensel [19] in 1888. Since normal bases in finite fields in the last two decades have been proved to be very useful for doing arithmetic computations, at present, the algorithmic and explicit construction of (particular) such bases has become one of the major research topics in Finite Field Theory.
Contenuti: Preface. I: Introduction and Outline. 1. The Normal Basis Theorem. 2. A Strengthening of the Normal Basis Theorem. 3. Preliminaries on Finite Fields. 4. A Reduction Theorem. 5. Particular Extensions of Prime Power Degree. 6. An Outline. II: Module Structures in Finite Fields. 7. On Modules over Principal Ideal Domains. 8. Cyclic Galois Extensions. 9. Algorithms for Determining Free Elements. 10. Cyclotomic Polynomials. III: Simultaneous Module Structures. 11. Subgroups Respecting Various Module Structures. 12. Decompositions Respecting Various Module Structures. 13. Extensions of Prime Power Degree (1). IV: The Existence of Completely Free Elements. 14. The Two-Field Problem. 15. Admissibility. 16. Extendability. 17. Extensions of Prime Power Degree (2). V: A Decomposition Theory. 18. Suitable Polynomials. 19. Decompositions of Completely Free Elements. 20. Regular Extensions. 21. Enumeration. VI: Explicit Constructions. 22. Strongly Regular Extensions. 23. Exceptional Cases. 24. Constructions in Regular Extensions. 25. Product Constructions. 26. Iterative Constructions. 27. Polynomial Constructions. References. List of Symbols. Index.
Titolo: Finite Fields : Normal Bases and Completely ...
Casa editrice: Springer Us Jan 1997
Data di pubblicazione: 1997
Legatura: Buch
Condizione: Neu
Da: Buchpark, Trebbin, Germania
Condizione: Gut. Zustand: Gut | Seiten: 171 | Sprache: Englisch | Produktart: Bücher. Codice articolo 3019904/203
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190186250
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9780792398516_new
Quantità: Più di 20 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Finite Fields are fundamental structures of Discrete Mathematics. They serve as basic data structures in pure disciplines like Finite Geometries and Combinatorics, and also have aroused much interest in applied disciplines like Coding Theory and Cryptograph. Codice articolo 458444000
Quantità: Più di 20 disponibili
Da: Mispah books, Redhill, SURRE, Regno Unito
Hardcover. Condizione: Like New. Like New. book. Codice articolo ERICA77307923985136
Quantità: 1 disponibili