Foundations of Rule Learning (Cognitive Technologies)
Johannes Fuernkranz
Venduto da Revaluation Books, Exeter, Regno Unito
Venditore AbeBooks dal 6 gennaio 2003
Nuovi - Brossura
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrelloVenduto da Revaluation Books, Exeter, Regno Unito
Venditore AbeBooks dal 6 gennaio 2003
Condizione: Nuovo
Quantità: 1 disponibili
Aggiungere al carrello2012 edition. 352 pages. 9.30x6.20x0.80 inches. In Stock.
Codice articolo 3642430465
Rules – the clearest, most explored and best understood form of knowledge representation – are particularly important for data mining, as they offer the best tradeoff between human and machine understandability. This book presents the fundamentals of rule learning as investigated in classical machine learning and modern data mining. It introduces a feature-based view, as a unifying framework for propositional and relational rule learning, thus bridging the gap between attribute-value learning and inductive logic programming, and providing complete coverage of most important elements of rule learning.
The book can be used as a textbook for teaching machine learning, as well as a comprehensive reference to research in the field of inductive rule learning. As such, it targets students, researchers and developers of rule learning algorithms, presenting the fundamental rule learning concepts in sufficient breadth and depth to enable the reader to understand, develop and apply rule learning techniques to real-world data.
Prof. Dr. Johannes Fürnkranz is a professor of knowledge engineering at the Technische Universität Darmstadt. He has chaired and served on the boards of the main journals and conferences in this field. His research interests include inductive rule learning, preference learning, game playing, web mining, and data mining in social science.
Dr. Dragan Gamberger heads the Laboratory for Information Systems at the Rudjer Boškovic Institute in Zagreb. He has chaired the main related conference ECML/PKDD, and is a coauthor of the publicly available Data Mining Server. His research interests include data mining and the medical applications of descriptive rule induction.
Prof. Dr. Nada Lavrac heads the Department of Knowledge Technologies at the Jožef Stefan Institute in Ljubljana. She is the author and editor of several books and proceedings in the field of data mining and machine learning, and she has chaired or served on the boards of the main related journals and conferences. Her research interests include machine learning, data mining, and inductive logic programming, and related applications in medicine, public health, bioinformatics, and the management of virtual enterprises. In 1997 she was awarded the Ambassador of Science of Slovenia prize, and in 2007 she was elected as an ECCAI Fellow.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Legal entity name: Edward Bowditch Ltd
Legal entity form: Limited company
Business correspondence address: Exstowe, Exton, Exeter, EX3 0PP
Company registration number: 04916632
VAT registration: GB834241546
Authorised representative: Mr. E. Bowditch
Orders usually dispatched within two working days.
Quantità dell?ordine | Da 7 a 18 giorni lavorativi | Da 2 a 5 giorni lavorativi |
---|---|---|
Primo articolo | EUR 28.75 | EUR 28.75 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.