Geometric Structures of Statistical Physics, Information Geometry, and Learning: SPIGL'20, Les Houches, France, July 27?31 (Springer Proceedings in Mathematics & Statistics, 361)

ISBN 10: 3030779564 ISBN 13: 9783030779566
Editore: Springer, 2021
Nuovi Rilegato

Da Best Price, Torrance, CA, U.S.A. Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 30 agosto 2024

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

SUPER FAST SHIPPING. Codice articolo 9783030779566

Segnala questo articolo

Riassunto:

Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.

This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.

Dalla quarta di copertina:

Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.

 This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Geometric Structures of Statistical Physics,...
Casa editrice: Springer
Data di pubblicazione: 2021
Legatura: Rilegato
Condizione: New

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

ISBN 10: 3030779564 ISBN 13: 9783030779566
Nuovo Rilegato
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can . Codice articolo 469419025

Contatta il venditore

Compra nuovo

EUR 250,30
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frank Nielsen (u. a.)
Editore: Springer, 2021
ISBN 10: 3030779564 ISBN 13: 9783030779566
Nuovo Rilegato
Print on Demand

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Geometric Structures of Statistical Physics, Information Geometry, and Learning | SPIGL'20, Les Houches, France, July 27-31 | Frank Nielsen (u. a.) | Buch | xiii | Englisch | 2021 | Springer | EAN 9783030779566 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Codice articolo 119980823

Contatta il venditore

Compra nuovo

EUR 259,55
Spese di spedizione: EUR 70,00
Da: Germania a: U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frank Nielsen
ISBN 10: 3030779564 ISBN 13: 9783030779566
Nuovo Rilegato
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing. 476 pp. Englisch. Codice articolo 9783030779566

Contatta il venditore

Compra nuovo

EUR 299,59
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frank Nielsen
ISBN 10: 3030779564 ISBN 13: 9783030779566
Nuovo Rilegato

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing. Codice articolo 9783030779566

Contatta il venditore

Compra nuovo

EUR 299,59
Spese di spedizione: EUR 64,81
Da: Germania a: U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Frank Nielsen
ISBN 10: 3030779564 ISBN 13: 9783030779566
Nuovo Rilegato

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Buch. Condizione: Neu. Neuware -Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 476 pp. Englisch. Codice articolo 9783030779566

Contatta il venditore

Compra nuovo

EUR 299,59
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Frank Nielsen
ISBN 10: 3030779564 ISBN 13: 9783030779566
Nuovo Rilegato

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Hardcover. Condizione: new. Hardcover. Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. Conversely, limitations and pitfalls encountered in AI question the very foundations of statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. During the last fifty years, statistical physics has been investigated through new geometric structures allowing covariant formalization of the thermodynamics. Inference methods in machine learning have begun to adapt these new geometric structures to process data in more abstract representation spaces.This volume collects selected contributions on the interplay of statistical physics and artificial intelligence. The aim is to provide a constructive dialogue around a common foundation to allow the establishment of new principles and laws governing these two disciplines in a unified manner. The contributions were presented at the workshop on the Joint Structures and Common Foundation of Statistical Physics, Information Geometry and Inference for Learning which was held in Les Houches in July 2020. The various theoretical approaches are discussed in the context of potential applications in cognitive systems, machine learning, signal processing. Machine learning and artificial intelligence increasingly use methodological tools rooted in statistical physics. This interplay between AI and statistical physics has been attested since the birth of AI, and principles underpinning statistical physics can shed new light on the conceptual basis of AI. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783030779566

Contatta il venditore

Compra nuovo

EUR 318,06
Spese di spedizione: GRATIS
In U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2021
ISBN 10: 3030779564 ISBN 13: 9783030779566
Nuovo Rilegato

Da: Books Puddle, New York, NY, U.S.A.

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. 1st ed. 2021 edition NO-PA16APR2015-KAP. Codice articolo 26388813292

Contatta il venditore

Compra nuovo

EUR 359,49
Spese di spedizione: EUR 3,46
In U.S.A.

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2021
ISBN 10: 3030779564 ISBN 13: 9783030779566
Nuovo Rilegato
Print on Demand

Da: Majestic Books, Hounslow, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Print on Demand. Codice articolo 391867955

Contatta il venditore

Compra nuovo

EUR 388,51
Spese di spedizione: EUR 7,36
Da: Regno Unito a: U.S.A.

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2021
ISBN 10: 3030779564 ISBN 13: 9783030779566
Nuovo Rilegato
Print on Demand

Da: Biblios, Frankfurt am main, HESSE, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. PRINT ON DEMAND. Codice articolo 18388813286

Contatta il venditore

Compra nuovo

EUR 388,82
Spese di spedizione: EUR 9,95
Da: Germania a: U.S.A.

Quantità: 4 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2021
ISBN 10: 3030779564 ISBN 13: 9783030779566
Nuovo Rilegato

Da: Mispah books, Redhill, SURRE, Regno Unito

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

hardcover. Condizione: New. New. book. Codice articolo ERICA80030307795646

Contatta il venditore

Compra nuovo

EUR 398,69
Spese di spedizione: EUR 28,29
Da: Regno Unito a: U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 1 copie di questo libro

Vedi tutti i risultati per questo libro