Intelligent Data Engineering and Automated Learning | Machine Learning from Imbalanced Data Sets

Syed Zahidur Rashid

ISBN 10: 3639762215 ISBN 13: 9783639762211
Editore: Scholars' Press, 2015
Nuovi Taschenbuch

Da preigu, Osnabrück, Germania Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 5 agosto 2024

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Intelligent Data Engineering and Automated Learning | Machine Learning from Imbalanced Data Sets | Syed Zahidur Rashid | Taschenbuch | Englisch | 2015 | Scholars' Press | EAN 9783639762211 | Verantwortliche Person für die EU: preigu GmbH & Co. KG, Lengericher Landstr. 19, 49078 Osnabrück, mail[at]preigu[dot]de | Anbieter: preigu. Codice articolo 113176209

Segnala questo articolo

Riassunto:

This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner's performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Intelligent Data Engineering and Automated ...
Casa editrice: Scholars' Press
Data di pubblicazione: 2015
Legatura: Taschenbuch
Condizione: Neu

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Syed Zahidur Rashid
Editore: Scholars\' Press, 2015
ISBN 10: 3639762215 ISBN 13: 9783639762211
Nuovo Brossura
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Autor/Autorin: Rashid Syed ZahidurThe author s research interests are in the areas of machine learning, data mining, information acquisition, and decision theory. Specifically, in active learning, active inference, interactive machine learning, sta. Codice articolo 151400880

Contatta il venditore

Compra nuovo

EUR 71,55
Spese di spedizione: EUR 48,99
Da: Germania a: U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Syed Zahidur Rashid
Editore: Scholars' Press Jan 2015, 2015
ISBN 10: 3639762215 ISBN 13: 9783639762211
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner s performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets. 220 pp. Englisch. Codice articolo 9783639762211

Contatta il venditore

Compra nuovo

EUR 89,90
Spese di spedizione: EUR 23,00
Da: Germania a: U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Syed Zahidur Rashid
Editore: Scholars' Press, 2015
ISBN 10: 3639762215 ISBN 13: 9783639762211
Nuovo Taschenbuch
Print on Demand

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. nach der Bestellung gedruckt Neuware - Printed after ordering - This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner s performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets. Codice articolo 9783639762211

Contatta il venditore

Compra nuovo

EUR 89,90
Spese di spedizione: EUR 61,73
Da: Germania a: U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Syed Zahidur Rashid
Editore: Scholars' Press Jan 2015, 2015
ISBN 10: 3639762215 ISBN 13: 9783639762211
Nuovo Taschenbuch
Print on Demand

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -This book investigates the nature of imbalanced data sets and looks at two external methods, which can increase a learner¿s performance on under represented classes. Both techniques artificially balance the training data; one by randomly re-sampling examples of the under represented class and adding them to the training set, the other by randomly removing examples of the over represented class from the training set. A combination scheme is then presented. The approach is one in which multiple classifiers are arranged in a hierarchical structure according to their sampling techniques. The architecture consists of two experts, one that boosts performance by combining classifiers that re-sample training data at different rates, the other by combining classifiers that remove data from the training data at different rates. Using the F-measure, which combines precision and recall as a performance statistic, the combination scheme is shown to be effective at learning from severely imbalanced data sets. In fact, when compared to a state of the art combination technique, Adaptive-Boosting, the proposed system is shown to be superior for learning on imbalanced data sets.VDM Verlag, Dudweiler Landstraße 99, 66123 Saarbrücken 220 pp. Englisch. Codice articolo 9783639762211

Contatta il venditore

Compra nuovo

EUR 89,90
Spese di spedizione: EUR 60,00
Da: Germania a: U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello