Intermediate Dynamics : A Linear Algebraic Approach
R a Howland
Venduto da AHA-BUCH GmbH, Einbeck, Germania
Venditore AbeBooks dal 14 agosto 2006
Nuovi - Rilegato
Condizione: Nuovo
Quantità: 2 disponibili
Aggiungere al carrelloVenduto da AHA-BUCH GmbH, Einbeck, Germania
Venditore AbeBooks dal 14 agosto 2006
Condizione: Nuovo
Quantità: 2 disponibili
Aggiungere al carrelloNeuware - As the name implies, Intermediate Dynamics: A Linear Algebraic Approach views 'intermediate dynamics'--Newtonian 3-D rigid body dynamics and analytical mechanics--from the perspective of the mathematical field. This is particularly useful in the former: the inertia matrix can be determined through simple translation (via the Parallel Axis Theorem) and rotation of axes using rotation matrices. The inertia matrix can then be determined for simple bodies from tabulated moments of inertia in the principal axes; even for bodies whose moments of inertia can be found only numerically, this procedure allows the inertia tensor to be expressed in arbitrary axes--something particularly important in the analysis of machines, where different bodies' principal axes are virtually never parallel. To understand these principal axes (in which the real, symmetric inertia tensor assumes a diagonalized 'normal form'), virtually all of Linear Algebra comes into play. Thus the mathematical field is first reviewed in a rigorous, but easy-to-visualize manner. 3-D rigid body dynamics then become a mere application of the mathematics. Finally analytical mechanics--both Lagrangian and Hamiltonian formulations--is developed, where linear algebra becomes central in linear independence of the coordinate differentials, as well as in determination of the conjugate momenta.Features include:- A general, uniform approach applicable to 'machines' as well as single rigid bodies- Complete proofs of all mathematical material. Similarly, there are over 100 detailed examples giving not only the results, but all intermediate calculations- An emphasis on integrals of the motion in the Newtonian dynamics- Development of the Analytical Mechanics based on Virtual Work rather than Variational Calculus, both making the presentation more economical conceptually, and the resulting principles able to treat both conservative and non-conservative systems.
Codice articolo 9780387280592
As the name implies, Intermediate Dynamics: A Linear Algebraic Approach views "intermediate dynamics"--Newtonian 3-D rigid body dynamics and analytical mechanics--from the perspective of the mathematical field. This is particularly useful in the former: the inertia matrix can be determined through simple translation (via the Parallel Axis Theorem) and rotation of axes using rotation matrices. The inertia matrix can then be determined for simple bodies from tabulated moments of inertia in the principal axes; even for bodies whose moments of inertia can be found only numerically, this procedure allows the inertia tensor to be expressed in arbitrary axes--something particularly important in the analysis of machines, where different bodies' principal axes are virtually never parallel. To understand these principal axes (in which the real, symmetric inertia tensor assumes a diagonalized "normal form"), virtually all of Linear Algebra comes into play. Thus the mathematical field is first reviewed in a rigorous, but easy-to-visualize manner. 3-D rigid body dynamics then become a mere application of the mathematics. Finally analytical mechanics--both Lagrangian and Hamiltonian formulations--is developed, where linear algebra becomes central in linear independence of the coordinate differentials, as well as in determination of the conjugate momenta.
Features include:
- A general, uniform approach applicable to "machines" as well as single rigid bodies
- Complete proofs of all mathematical material. Similarly, there are over 100 detailed examples giving not only the results, but all intermediate calculations
- An emphasis on integrals of the motion in the Newtonian dynamics
- Development of the Analytical Mechanics based on Virtual Work rather than Variational Calculus, both making the presentation more economical conceptually, and the resulting principles able to treat both conservative and non-conservative systems.
As the name implies, Intermediate Dynamics: A Linear Algebraic Approach views "intermediate dynamics"--Newtonian 3-D rigid body dynamics and analytical mechanics--from the perspective of the mathematical field. This is particularly useful in the former: the inertia matrix can be determined through simple translation (via the Parallel Axis Theorem) and rotation of axes using rotation matrices. The inertia matrix can then be determined for simple bodies from tabulated moments of inertia in the principal axes; even for bodies whose moments of inertia can be found only numerically, this procedure allows the inertia tensor to be expressed in arbitrary axes--something particularly important in the analysis of machines, where different bodies' principal axes are virtually never parallel. To understand these principal axes (in which the real, symmetric inertia tensor assumes a diagonalized "normal form"), virtually all of Linear Algebra comes into play. Thus the mathematical field is first reviewed in a rigorous, but easy-to-visualize manner. 3-D rigid body dynamics then become a mere application of the mathematics. Finally analytical mechanics--both Lagrangian and Hamiltonian formulations--is developed, where linear algebra becomes central in linear independence of the coordinate differentials, as well as in determination of the conjugate momenta.
Features include:
o A general, uniform approach applicable to "machines" as well as single rigid bodies.
o Complete proofs of all mathematical material. Similarly, there are over 100 detailed examples giving not only the results, but all intermediate calculations.
o An emphasis on integrals of the motion in the Newtonian dynamics.
o Development of the Analytical Mechanics based on Virtual Work rather than Variational Calculus, both making the presentation more economical conceptually, and the resulting principles able to treat both conservative and non-conservative systems.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Termini e condizioni generali e informazioni sul cliente / Informativa sulla privacy
I. Condizioni generali di contratto
§ 1 Disposizioni di base
(1) I seguenti termini e condizioni si applicano a tutti i contratti che l'utente conclude con noi in qualità di fornitore (AHA-BUCH GmbH) tramite le piattaforme Internet AbeBooks e/o ZVAB. Se non diversamente concordato, l'inclusione di uno qualsiasi dei tuoi termini e condizioni da te utilizzati sarà contestata.
(2) Un consumatore ai sensi delle segu...
Spediamo il tuo ordine dopo averlo ricevuto
per articoli a portata di mano entro 24 ore,
per articoli con fornitura notturna entro 48 ore.
Nel caso in cui abbiamo bisogno di ordinare un articolo dal nostro fornitore, il nostro tempo di spedizione dipende dalla data di ricezione degli articoli, ma gli articoli verranno spediti lo stesso giorno.
Il nostro obiettivo è quello di inviare gli articoli ordinati nel modo più veloce, ma anche più efficiente e sicuro ai nostri clienti.
Quantità dell?ordine | Da 30 a 40 giorni lavorativi | Da 7 a 14 giorni lavorativi |
---|---|---|
Primo articolo | EUR 64.98 | EUR 74.98 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.