Foto dell'editore

Introduction to Data Mining

Tan, Pang-Ning; Steinbach, Michael; Kumar, Vipin

Editore: Pearson, 2005
ISBN 10: 0321321367 / ISBN 13: 9780321321367
Nuovi / Hardcover / Quantità: 1
Da Book Deals (Lewiston, NY, U.S.A.)
Copie del libro da altre librerie
Mostra tutte le  copie di questo libro
Aggiungere al carrello
Prezzo consigliato:
Prezzo: EUR 193,69
Convertire valuta
Spedizione: EUR 0,00
In U.S.A.
Destinazione, tempi e costi

Lista dei preferiti


Dati bibliografici

Titolo: Introduction to Data Mining

Casa editrice: Pearson

Data di pubblicazione: 2005

Legatura: Hardcover

Condizione libro: New


Brand New, Unread Copy in Perfect Condition. A+ Customer Service! Summary: 1 Introduction 1.1 What is Data Mining? 1.2 Motivating Challenges 1.3 The Origins of Data Mining 1.4 Data Mining Tasks 1.5 Scope and Organization of the Book 1.6 Bibliographic Notes 1.7 Exercises 2 Data 2.1 Types of Data 2.2 Data Quality 2.3 Data Preprocessing 2.4 Measures of Similarity and Dissimilarity 2.5 Bibliographic Notes 2.6 Exercises 3 Exploring Data 3.1 The Iris Data Set 3.2 Summary Statistics 3.3 Visualization 3.4 OLAP and Multidimensional Data Analysis 3.5 Bibliographic Notes 3.6 Exercises 4 Classification: Basic Concepts, Decision Trees, and Model Evaluation 4.1 Preliminaries 4.2 General Approach to Solving a Classification Problem 4.3 Decision Tree Induction 4.4 Model Overfitting 4.5 Evaluating the Performance of a Classifier 4.6 Methods for Comparing Classifiers 4.7 Bibliographic Notes 4.8 Exercises 5 Classification: Alternative Techniques 5.1 Rule-Based Classifier 5.2 Nearest-Neighbor Classifiers 5.3 Bayesian Classifiers 5.4 Artificial Neural Network (ANN) 5.5 Support Vector Machine (SVM) 5.6 Ensemble Methods 5.7 Class Imbalance Problem 5.8 Multiclass Problem 5.9 Bibliographic Notes 5.10 Exercises 6 Association Analysis: Basic Concepts and Algorithms 6.1 Problem Definition 6.2 Frequent Itemset Generation 6.3 Rule Generation 6.4 Compact Representation of Frequent Itemsets 6.5 Alternative Methods for Generating Frequent Itemsets 6.6 FP-Growth Algorithm 6.7 Evaluation of Association Patterns 6.8 Effect of Skewed Support Distribution 6.9 Bibliographic Notes 6.10 Exercises 7 Association Analysis: Advanced Concepts 7.1 Handling Categorical Attributes 7.2 Handling Continuous Attributes 7.3 Handling a Concept Hierarchy 7.4 Sequential Patterns 7.5 Subgraph Patterns 7.6 Infrequent Patterns 7.7 Bibliographic Notes 7.8 Exercises. Codice inventario libreria ABE_book_new_0321321367

Su questo libro:

Book ratings provided by GoodReads):
3,96 valutazione media
(135 valutazioni)


Introduction to Data Mining presents fundamental concepts and algorithms for those learning data mining for the first time. Each major topic is organized into two chapters, beginning with basic concepts that provide necessary background for understanding each data mining technique, followed by more advanced concepts and algorithms.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Info su libreria e pagamento

Metodi di pagamento

La libreria accetta i seguenti metodi di pagamento:

  • American Express
  • Carte Bleue
  • Mastercard
  • Visa

[Cercare nel catalogo della libreria]

[Tutti i libri della libreria]

[Fare una domanda alla libreria]

Libreria: Book Deals
Indirizzo: Lewiston, NY, U.S.A.

Libreria AbeBooks dal: 7 maggio 2014
Valutazione libreria: 4 stelle

Condizioni di vendita:

We guarantee the condition of every book as it's described on the AbeBooks web
sites. If you're dissatisfied with your purchase (Incorrect Book/Not as
Described/Damaged) or if the order hasn't arrived, you're eligible for a refund
within 30 days of the estimated delivery date. If you've changed your mind
about a book that you've ordered, please use the Ask bookseller a question link
to contact us and we'll respond within 2 business days.

Condizioni di spedizione:

Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.