Introduction to Digital Logic Design builds student understanding from the bottom up-starting with simple binary numbers and codes, moving through the switch, gate, and register levels, and concluding with an introduction to system architecture. Each chapter progresses through more advanced levels of design and abstraction, tying together concepts previously introduced. Students will find that the circuits they learned to construct in early chapters are used as primitive design elements in later chapters, and that this progression greatly aids their comprehension and retention. The text integrates design thinking into every chapter and provides excellent coverage of the most modern technologies. The result is a careful balance between the understanding of fundamental principles and their application to real-world implementation issues.
John P. Hayes, a well-known authority in the area of computer engineering, now brings his expertise to digital logic design. Intended as a mainstream introduction for the first course, Introduction to Digital Logic Design provides a presentation which is both scholarly and highly supportive of student learning. In addition, it presents the traditional core topics including sequential and combinational design and register level logic. This is the first introductory text that provides balanced coverage of concepts, techniques and practice. Also, the text includes excellent coverage of the most modern topics and technologies -- programmable logic devices (PLD's), the testability, and computer aided design (CAD). This text has an attractive, practical design that highlights a number of features that support student learning.