An Introduction to Ergodic Theory

Walters, Peter

ISBN 10: 0387905995 ISBN 13: 9780387905990
Editore: Springer-Verlag New York Inc., 1982
Usato Rilegato

Da Anybook.com, Lincoln, Regno Unito Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Heritage Bookseller
Membro AbeBooks dal 1996

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

This is an ex-library book and may have the usual library/used-book markings inside.This book has hardback covers. In poor condition, suitable as a reading copy. No dust jacket. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,600grams, ISBN:0387905995. Codice articolo 7089648

Segnala questo articolo

Riassunto:

This text provides an introduction to ergodic theory suitable for readers knowing basic measure theory. The mathematical prerequisites are summarized in Chapter 0. It is hoped the reader will be ready to tackle research papers after reading the book. The first part of the text is concerned with measure-preserving transformations of probability spaces; recurrence properties, mixing properties, the Birkhoff ergodic theorem, isomorphism and spectral isomorphism, and entropy theory are discussed. Some examples are described and are studied in detail when new properties are presented. The second part of the text focuses on the ergodic theory of continuous transformations of compact metrizable spaces. The family of invariant probability measures for such a transformation is studied and related to properties of the transformation such as topological traitivity, minimality, the size of the non-wandering set, and existence of periodic points. Topological entropy is introduced and related to measure-theoretic entropy. Topological pressure and equilibrium states are discussed, and a proof is given of the variational principle that relates pressure to measure-theoretic entropies. Several examples are studied in detail. The final chapter outlines significant results and some applications of ergodic theory to other branches of mathematics.

Contenuti: 0 Preliminaries.- §0.1 Introduction.- §0.2 Measure Spaces.- §0.3 Integration.- §0.4 Absolutely Continuous Measures and Conditional Expectations.- §0.5 Function Spaces.- §0.6 Haar Measure.- §0.7 Character Theory.- §0.8 Endomorphisms of Tori.- §0.9 Perron—Frobenius Theory.- §0.10 Topology.- 1 Measure-Preserving Transformations.- §1.1 Definition and Examples.- §1.2 Problems in Ergodic Theory.- §1.3 Associated Isometries.- §1.4 Recurrence.- §1.5 Ergodicity.- §1.6 The Ergodic Theorem.- §1.7 Mixing.- 2 Isomorphism, Conjugacy, and Spectral Isomorphism.- §2.1 Point Maps and Set Maps.- §2.2 Isomorphism of Measure-Preserving Transformations.- §2.3 Conjugacy of Measure-Preserving Transformations.- §2.4 The Isomorphism Problem.- §2.5 Spectral Isomorphism.- §2.6 Spectral Invariants.- 3 Measure-Preserving Transformations with Discrete Spectrum.- §3.1 Eigenvalues and Eigenfunctions.- §3.2 Discrete Spectrum.- §3.3 Group Rotations.- 4 Entropy.- §4.1 Partitions and Subalgebras.- §4.2 Entropy of a Partition.- §4.3 Conditional Entropy.- §4.4 Entropy of a Measure-Preserving Transformation.- §4.5 Properties of h (T, A) and h (T).- §4.6 Some Methods for Calculating h (T).- §4.7 Examples.- §4.8 How Good an Invariant is Entropy?.- §4.9 Bernoulli Automorphisms and Kolmogorov Automorphisms.- §4.10 The Pinsker ?-Algebra of a Measure-Preserving Transformation.- §4.11 Sequence Entropy.- §4.12 Non-invertible Transformations.- §4.13 Comments.- 5 Topological Dynamics.- §5.1 Examples.- §5.2 Minimality.- §5.3 The Non-wandering Set.- §5.4 Topological Transitivity.- §5.5 Topological Conjugacy and Discrete Spectrum.- §5.6 Expansive Homeomorphisms.- 6 Invariant Measures for Continuous Transformations.- §6.1 Measures on Metric Spaces.- §6.2 Invariant Measures for Continuous Transformations.- §6.3 Interpretation of Ergodicity and Mixing.- §6.4 Relation of Invariant Measures to Non-wandering Sets, Periodic Points and Topological Transitivity.- §6.5 Unique Ergodicity.- §6.6 Examples.- 7 Topological Entropy.- §7.1 Definition Using Open Covers.- §7.2 Bowen’s Definition.- §7.3 Calculation of Topological Entropy.- 8 Relationship Between Topological Entropy and Measure-Theoretic Entropy.- §8.1 The Entropy Map.- §8.2 The Variational Principle.- §8.3 Measures with Maximal Entropy.- §8.4 Entropy of Affine Transformations.- §8.5 The Distribution of Periodic Points.- §8.6 Definition of Measure-Theoretic Entropy Using the Metrics dn.- 9 Topological Pressure and Its Relationship with Invariant Measures.- §9.1 Topological Pressure.- §9.2 Properties of Pressure.- §9.3 The Variational Principle.- §9.4 Pressure Determines M(X, T).- §9.5 Equilibrium States.- 10 Applications and Other Topics.- §10.1 The Qualitative Behaviour of Diffeomorphisms.- §10.2 The Subadditive Ergodic Theorem and the Multiplicative Ergodic Theorem.- §10.3 Quasi-invariant Measures.- §10.4 Other Types of Isomorphism.- §10.5 Transformations of Intervals.- §10.6 Further Reading.- References.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: An Introduction to Ergodic Theory
Casa editrice: Springer-Verlag New York Inc.
Data di pubblicazione: 1982
Legatura: Rilegato
Condizione: Poor

I migliori risultati di ricerca su AbeBooks

Immagini fornite dal venditore

Walters, Peter:
Editore: Springer, 1982
ISBN 10: 0387905995 ISBN 13: 9780387905990
Antico o usato Rilegato

Da: books4less (Versandantiquariat Petra Gros GmbH & Co. KG), Welling, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

gebundene Ausgabe. Condizione: Gut. 250 Seiten Das hier angebotene Buch stammt aus einer teilaufgelösten wissenschaftlichen Bibliothek und trägt die entsprechenden Kennzeichnungen (Rückenschild, Instituts-Stempel.); der Buchzustand ist ansonsten ordentlich und dem Alter entsprechend gut. Der Bucheinband ist staubschmutzig. Einbandkanten sind bestoßen. Der Buchrücken ist instabil. In ENGLISCHER Sprache. Sprache: Englisch Gewicht in Gramm: 570. Codice articolo 2125893

Contatta il venditore

Compra usato

EUR 17,95
Spedizione EUR 12,95
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Walters, Peter
Editore: Springer, 1981
ISBN 10: 0387905995 ISBN 13: 9780387905990
Antico o usato Rilegato

Da: Better World Books, Mishawaka, IN, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Good. Former library copy. Pages intact with minimal writing/highlighting. The binding may be loose and creased. Dust jackets/supplements are not included. Includes library markings. Stock photo provided. Product includes identifying sticker. Better World Books: Buy Books. Do Good. Codice articolo 6424340-6

Contatta il venditore

Compra usato

EUR 41,21
Spedizione gratuita
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello