Riassunto
This book provides an account of those parts of contemporary set theory of direct relevance to other areas of pure mathematics. The intended reader is either an advanced-level mathematics undergraduate, a beginning graduate student in mathematics, or an accomplished mathematician who desires or needs some familiarity with modern set theory. The book is written in a fairly easy-going style, with minimal formalism. In Chapter 1, the basic principles of set theory are developed in a 'naive' manner. Here the notions of 'set', 'union', 'intersection', 'power set', 'rela tion', 'function', etc., are defined and discussed. One assumption in writing Chapter 1 has been that, whereas the reader may have met all of these 1 concepts before and be familiar with their usage, she may not have con sidered the various notions as forming part of the continuous development of a pure subject (namely, set theory). Consequently, the presentation is at the same time rigorous and fast.
Contenuti
Preface; 1. Naïve Set Theory; 2. The Zermelo-Fraenkel Axioms; 3. Ordinal and Cardinal Numbers; 4. Topics in Pure Set Theory; 5. The Axiom of Constructibility; 6. Independence Proofs in Set Theory; 7. Non-Well-Founded Set Theory; Bibliography; Glossary of Symbols; Index
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.