Learning from Imbalanced Data Sets
Fernández
Venduto da Ria Christie Collections, Uxbridge, Regno Unito
Venditore AbeBooks dal 25 marzo 2015
Nuovi - Rilegato
Condizione: Nuovo
Quantità: Più di 20 disponibili
Aggiungere al carrelloVenduto da Ria Christie Collections, Uxbridge, Regno Unito
Venditore AbeBooks dal 25 marzo 2015
Condizione: Nuovo
Quantità: Più di 20 disponibili
Aggiungere al carrelloIn.
Codice articolo ria9783319980737_new
This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge.
This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.
Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.
This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
All Returns and Refund are as per Abebooks policies.
Orders usually ship within 2 business days. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required. Thank you!
Quantità dell?ordine | Da 5 a 10 giorni lavorativi | Da 5 a 9 giorni lavorativi |
---|---|---|
Primo articolo | EUR 10.34 | EUR 10.34 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.