Learning from Imbalanced Data Sets
Fernández
Venduto da Majestic Books, Hounslow, Regno Unito
Venditore AbeBooks dal 19 gennaio 2007
Nuovi - Rilegato
Condizione: Nuovo
Quantità: 4 disponibili
Aggiungere al carrelloVenduto da Majestic Books, Hounslow, Regno Unito
Venditore AbeBooks dal 19 gennaio 2007
Condizione: Nuovo
Quantità: 4 disponibili
Aggiungere al carrelloPrint on Demand.
Codice articolo 381877176
This book provides a general and comprehensible overview of imbalanced learning. It contains a formal description of a problem, and focuses on its main features, and the most relevant proposed solutions. Additionally, it considers the different scenarios in Data Science for which the imbalanced classification can create a real challenge.
This book stresses the gap with standard classification tasks by reviewing the case studies and ad-hoc performance metrics that are applied in this area. It also covers the different approaches that have been traditionally applied to address the binary skewed class distribution. Specifically, it reviews cost-sensitive learning, data-level preprocessing methods and algorithm-level solutions, taking also into account those ensemble-learning solutions that embed any of the former alternatives. Furthermore, it focuses on the extension of the problem for multi-class problems, where the former classical methods are no longer to be applied in a straightforward way.This book also focuses on the data intrinsic characteristics that are the main causes which, added to the uneven class distribution, truly hinders the performance of classification algorithms in this scenario. Then, some notes on data reduction are provided in order to understand the advantages related to the use of this type of approaches.
Finally this book introduces some novel areas of study that are gathering a deeper attention on the imbalanced data issue. Specifically, it considers the classification of data streams, non-classical classification problems, and the scalability related to Big Data. Examples of software libraries and modules to address imbalanced classification are provided.
This book is highly suitable for technical professionals, senior undergraduate and graduate students in the areas of data science, computer science and engineering. It will also be useful for scientists and researchers to gain insight on the current developments in this area of study, as well as future research directions.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Returns accepted if you are not satisfied with the Service or Book.
Best packaging and fast delivery
Quantità dell?ordine | Da 14 a 45 giorni lavorativi | Da 5 a 10 giorni lavorativi |
---|---|---|
Primo articolo | EUR 7.49 | EUR 11.35 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.