Mastering Azure Machine Learning
Marcel Alsdorf, Christoph Korner
Venduto da Rarewaves.com UK, London, Regno Unito
Venditore AbeBooks dal 11 giugno 2025
Nuovi - Brossura
Condizione: Nuovo
Quantità: Più di 20 disponibili
Aggiungere al carrelloVenduto da Rarewaves.com UK, London, Regno Unito
Venditore AbeBooks dal 11 giugno 2025
Condizione: Nuovo
Quantità: Più di 20 disponibili
Aggiungere al carrelloSupercharge and automate your deployments to Azure Machine Learning clusters and Azure Kubernetes Service using Azure Machine Learning servicesKey FeaturesImplement end-to-end machine learning pipelines on AzureTrain deep learning models using Azure compute infrastructureDeploy machine learning models using MLOpsBook DescriptionAzure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logging ML training runs, designing training and deployment pipelines, and managing these pipelines via MLOps. The first section shows you how to set up an Azure Machine Learning workspace; ingest and version datasets; as well as preprocess, label, and enrich these datasets for training. In the next two sections, you'll discover how to enrich and train ML models for embedding, classification, and regression. You'll explore advanced NLP techniques, traditional ML models such as boosted trees, modern deep neural networks, recommendation systems, reinforcement learning, and complex distributed ML training techniques - all using Azure Machine Learning. The last section will teach you how to deploy the trained models as a batch pipeline or real-time scoring service using Docker, Azure Machine Learning clusters, Azure Kubernetes Services, and alternative deployment targets. By the end of this book, you'll be able to combine all the steps you've learned by building an MLOps pipeline.What you will learnUnderstand the end-to-end ML pipelineGet to grips with the Azure Machine Learning workspaceIngest, analyze, and preprocess datasets for ML using the Azure cloudTrain traditional and modern ML techniques efficiently using Azure MLDeploy ML models for batch and real-time scoringUnderstand model interoperability with ONNXDeploy ML models to FPGAs and Azure IoT EdgeBuild an automated MLOps pipeline using Azure DevOpsWho this book is forThis book is for machine learning engineers, data scientists, and machine learning developers who want to use the Microsoft Azure cloud to manage their datasets and machine learning experiments and build an enterprise-grade ML architecture using MLOps. This book will also help anyone interested in machine learning to explore important steps of the ML process and use Azure Machine Learning to support them, along with building powerful ML cloud applications. A basic understanding of Python and knowledge of machine learning are recommended.
Codice articolo LU-9781803232416
Supercharge and automate your deployments to Azure Machine Learning clusters and Azure Kubernetes Service using Azure Machine Learning services
Key Features:
Book Description:
Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logging ML training runs, designing training and deployment pipelines, and managing these pipelines via MLOps.
The first section shows you how to set up an Azure Machine Learning workspace; ingest and version datasets; as well as preprocess, label, and enrich these datasets for training. In the next two sections, you'll discover how to enrich and train ML models for embedding, classification, and regression. You'll explore advanced NLP techniques, traditional ML models such as boosted trees, modern deep neural networks, recommendation systems, reinforcement learning, and complex distributed ML training techniques - all using Azure Machine Learning.
The last section will teach you how to deploy the trained models as a batch pipeline or real-time scoring service using Docker, Azure Machine Learning clusters, Azure Kubernetes Services, and alternative deployment targets.
By the end of this book, you'll be able to combine all the steps you've learned by building an MLOps pipeline.
What You Will Learn:
Who this book is for:
This book is for machine learning engineers, data scientists, and machine learning developers who want to use the Microsoft Azure cloud to manage their datasets and machine learning experiments and build an enterprise-grade ML architecture using MLOps. This book will also help anyone interested in machine learning to explore important steps of the ML process and use Azure Machine Learning to support them, along with building powerful ML cloud applications. A basic understanding of Python and knowledge of machine learning are recommended.
Christoph Körner previously worked as a cloud solution architect for Microsoft, specializing in Azure-based big data and machine learning solutions, where he was responsible for designing end-to-end machine learning and data science platforms. He currently works for a large cloud provider on highly scalable distributed in-memory database services. Christoph has authored four books: Deep Learning in the Browser for Bleeding Edge Press, as well as Mastering Azure Machine Learning (first edition), Learning Responsive Data Visualization, and Data Visualization with D3 and AngularJS for Packt Publishing.
Marcel Alsdorf is a cloud solution architect with 5 years of experience at Microsoft consulting various companies on their cloud strategy. In this role, he focuses on supporting companies in their move toward being data-driven by analyzing their requirements and designing their data infrastructure in the areas of IoT and event streaming, data warehousing, and machine learning. On the side, he shares his technical and business knowledge as a coach in hackathons, as a mentor for start-ups and peers, and as a university lecturer. Before his current role, he worked as an FPGA engineer for the LHC project at CERN and as a software engineer in the banking industry.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Please note that we do not offer Priority shipping to any country.
We currently do not ship to the below countries:
Canada (due to Canada Post strike)
Russia
Belarus
Ukraine
Israel
Please do not attempt to place orders with any of these countries as a ship to address - they will be cancelled.
Quantità dell?ordine | Da 60 a 60 giorni lavorativi | Da 60 a 60 giorni lavorativi |
---|---|---|
Primo articolo | EUR 74.93 | EUR 115.27 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.