Da
Biblios, Frankfurt am main, HESSE, Germania
Valutazione del venditore 4 su 5 stelle
Venditore AbeBooks dal 10 settembre 2024
pp. 720. Codice articolo 18372527965
This book develops the theory of statistical inference in statistical models with an infinite-dimensional parameter space, including mathematical foundations and key decision-theoretic principles.
Informazioni sugli autori:
Evarist Giné (1944–2015) was Head of the Department of Mathematics at the University of Connecticut. Giné was a distinguished mathematician who worked on mathematical statistics and probability in infinite dimensions. He was the author of two books and more than 100 articles.
Richard Nickl is a Reader in Mathematical Statistics in the Statistical Laboratory within the Department of Pure Mathematics and Mathematical Statistics at the University of Cambridge.
Titolo: Mathematical Foundations of ...
Casa editrice: Cambridge University Press
Data di pubblicazione: 2015
Legatura: Rilegato
Condizione: New
Da: Magus Books Seattle, Seattle, WA, U.S.A.
Hardcover. Condizione: VG. used hardcover copy in illustrated boards, no jacket, as issued. light shelfwear, corners perhaps slightly bumped. pages and binding are clean, straight and tight. there are no marks to the text or other serious flaws. Codice articolo 1526758
Quantità: 1 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2317530265156
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 23883312-n
Quantità: Più di 20 disponibili
Da: Ria Christie Collections, Uxbridge, Regno Unito
Condizione: New. In. Codice articolo ria9781107043169_new
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 23883312-n
Quantità: Più di 20 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781107043169
Quantità: Più di 20 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 1st edition. 720 pages. 10.37x7.04x1.71 inches. In Stock. This item is printed on demand. Codice articolo __1107043166
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Gebunden. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. High-dimensional and nonparametric statistical models are ubiquitous in modern data science. This book develops a mathematically coherent and objective approach to statistical inference in such models, with a focus on function estimation problems arising fr. Codice articolo 31552177
Quantità: Più di 20 disponibili
Da: CitiRetail, Stevenage, Regno Unito
Hardcover. Condizione: new. Hardcover. In nonparametric and high-dimensional statistical models, the classical Gauss-Fisher-Le Cam theory of the optimality of maximum likelihood estimators and Bayesian posterior inference does not apply, and new foundations and ideas have been developed in the past several decades. This book gives a coherent account of the statistical theory in infinite-dimensional parameter spaces. The mathematical foundations include self-contained 'mini-courses' on the theory of Gaussian and empirical processes, on approximation and wavelet theory, and on the basic theory of function spaces. The theory of statistical inference in such models - hypothesis testing, estimation and confidence sets - is then presented within the minimax paradigm of decision theory. This includes the basic theory of convolution kernel and projection estimation, but also Bayesian nonparametrics and nonparametric maximum likelihood estimation. In the final chapter, the theory of adaptive inference in nonparametric models is developed, including Lepski's method, wavelet thresholding, and adaptive inference for self-similar functions. High-dimensional and nonparametric statistical models are ubiquitous in modern data science. This book develops a mathematically coherent and objective approach to statistical inference in such models, with a focus on function estimation problems arising from random samples (density estimation) or from Gaussian regression/signal in white noise problems. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9781107043169
Quantità: 1 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 23883312
Quantità: Più di 20 disponibili