Mathematical Methods for Partial Differential Equations
Heinbockel, J.H.
Venduto da Chiron Media, Wallingford, Regno Unito
Venditore AbeBooks dal 2 agosto 2010
Nuovi - Brossura
Condizione: Nuovo
Quantità: 10 disponibili
Aggiungere al carrelloVenduto da Chiron Media, Wallingford, Regno Unito
Venditore AbeBooks dal 2 agosto 2010
Condizione: Nuovo
Quantità: 10 disponibili
Aggiungere al carrelloCodice articolo 6666-IUK-9781412003803
Mathematical Methods for Partial Differential Equations is an introduction in the use of various mathematical methods needed for solving linear partial differential equations. The material is suitable for a two semester course in partial differential equations for mathematicians, engineers, physicists, chemistry and science majors and is suitable for upper level college undergraduates or beginning graduate students.
Chapter one reviews necessary background material from the subject area of ordinary differential equations and then develops solution techniques for some easy to solve partial differential equations. Chapter two introduces orthogonal functions and Sturm-Liouville systems. Chapter three utilizes orthogonal functions to develop Fourier series and Fourier integrals. The fourth, fifth and sixth chapters consider various applied engineering applications of partial differential equations. Selected applied topics are developed together with necessary solution methods associated with parabolic, hyperbolic and elliptic type partial differential equations. Chapter seven introduces transform methods for solving linear partial differential equations. Numerous examples associated with the Laplace, Fourier exponential, Fourier sine, Fourier cosine and selected finite Sturm-Liouville transforms are given. Chapter eight introduces Green's functions for ordinary differential equations and chapter nine finishes with applications of Green function techniques for solving linear partial differential equations.
There are four Appendices. The Appendix A contains units of measurements from the Système International d'Unitès along with some selected physical constants. The Appendix B contains solutions to selected exercises. The Appendix C lists mathematicians whose research has contributed to the area of partial differential equations. The Appendix D contains a short listing of integrals. The text has numerous illustrative worked examples and over 340 exercises.
Dr. John H. Heinbockel is Professor Emeritus of Mathematics and Statistics from Old Dominion University, Norfolk, Virginia. He received his Ph.D. in applied mathematics from North Carolina State University in 1964. He joined Old Dominion University in 1967 and since then has taught a variety of mathematics courses at both the undergraduate and graduate level. He has had a variety of research grants during this time and is the author/co-author of numerous technical papers in the areas of applied mathematics.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Shipping costs are based on books weighing 2.2 LB, or 1 KG. If your book order is heavy or oversized, we may contact you to let you know extra shipping is required.
Quantità dell?ordine | Da 14 a 21 giorni lavorativi | Da 10 a 21 giorni lavorativi |
---|---|---|
Primo articolo | EUR 23.09 | EUR 23.09 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.