Numerical Analysis of Nonlinear Partial Differential-Algebraic Equations: A Coupled and an Abstract Systems Approach

Matthes, Michael

ISBN 10: 3832532781 ISBN 13: 9783832532789
Editore: Logos Verlag Berlin, 2012
Nuovi Brossura

Da Kennys Bookshop and Art Galleries Ltd., Galway, GY, Irlanda Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 27 febbraio 2001

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

2012. Paperback. . . . . . Codice articolo V9783832532789

Segnala questo articolo

Riassunto:

Various mathematical models in many application areas give rise to systems of so called partial or abstract differential-algebraic equations (ADAEs). A substantial mathematical treatment of nonlinear ADAEs is still at an initial stage. In this thesis two approaches for treating nonlinear ADAEs are presented. The first one represents an extension of an approach by Tischendorf for the treatment of a specific class of linear ADAEs to the nonlinear case. It is based on the Galerkin approach and the theory of monotone operators for evolution equations. Unique solvability of the ADAE and strong convergence of the Galerkin solutions is proven. Furthermore it is shown that this class of ADAEs has Perturbation Index 1 and at most ADAE Index 1. In the second approach we formulate two prototypes of coupled systems where a semi-explicit differential-algebraic equation is coupled to an infinite dimensional algebraic operator equation or an evolution equation. For both prototypes unique solvability, strong convergence of Galerkin solutions and a Perturbation Index 1 result is shown. Both prototypes can be applied to concrete coupled systems in circuit simulation relying on a new global solvability result for the nonlinear equations of the Modified Nodal Analysis under suitable topological assumptions.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Numerical Analysis of Nonlinear Partial ...
Casa editrice: Logos Verlag Berlin
Data di pubblicazione: 2012
Legatura: Brossura
Condizione: New

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Matthes, Michael
Editore: Logos Verlag Berlin, 2012
ISBN 10: 3832532781 ISBN 13: 9783832532789
Nuovo paperback

Da: ISD LLC, Bristol, CT, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: New. Codice articolo 368061

Contatta il venditore

Compra nuovo

EUR 48,38
Spedizione gratuita
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Matthes, Michael
Editore: Logos Verlag, 2012
ISBN 10: 3832532781 ISBN 13: 9783832532789
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 45932517-n

Contatta il venditore

Compra nuovo

EUR 65,39
EUR 2,25 shipping
Spedito in U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Matthes, Michael
Editore: Logos Verlag, 2012
ISBN 10: 3832532781 ISBN 13: 9783832532789
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 45932517

Contatta il venditore

Compra usato

EUR 67,56
EUR 2,25 shipping
Spedito in U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Michael Matthes
ISBN 10: 3832532781 ISBN 13: 9783832532789
Nuovo Paperback

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Various mathematical models in many application areas give rise to systems of so called partial or abstract differential-algebraic equations (ADAEs). A substantial mathematical treatment of nonlinear ADAEs is still at an initial stage. In this thesis two approaches for treating nonlinear ADAEs are presented. The first one represents an extension of an approach by Tischendorf for the treatment of a specific class of linear ADAEs to the nonlinear case. It is based on the Galerkin approach and the theory of monotone operators for evolution equations. Unique solvability of the ADAE and strong convergence of the Galerkin solutions is proven. Furthermore it is shown that this class of ADAEs has Perturbation Index 1 and at most ADAE Index 1. In the second approach we formulate two prototypes of coupled systems where a semi-explicit differential-algebraic equation is coupled to an infinite dimensional algebraic operator equation or an evolution equation. For both prototypes unique solvability, strong convergence of Galerkin solutions and a Perturbation Index 1 result is shown.Both prototypes can be applied to concrete coupled systems in circuit simulation relying on a new global solvability result for the nonlinear equations of the Modified Nodal Analysis under suitable topological assumptions. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783832532789

Contatta il venditore

Compra nuovo

EUR 67,72
Spedizione gratuita
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Michael Matthes
ISBN 10: 3832532781 ISBN 13: 9783832532789
Nuovo Paperback

Da: AussieBookSeller, Truganina, VIC, Australia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Various mathematical models in many application areas give rise to systems of so called partial or abstract differential-algebraic equations (ADAEs). A substantial mathematical treatment of nonlinear ADAEs is still at an initial stage. In this thesis two approaches for treating nonlinear ADAEs are presented. The first one represents an extension of an approach by Tischendorf for the treatment of a specific class of linear ADAEs to the nonlinear case. It is based on the Galerkin approach and the theory of monotone operators for evolution equations. Unique solvability of the ADAE and strong convergence of the Galerkin solutions is proven. Furthermore it is shown that this class of ADAEs has Perturbation Index 1 and at most ADAE Index 1. In the second approach we formulate two prototypes of coupled systems where a semi-explicit differential-algebraic equation is coupled to an infinite dimensional algebraic operator equation or an evolution equation. For both prototypes unique solvability, strong convergence of Galerkin solutions and a Perturbation Index 1 result is shown.Both prototypes can be applied to concrete coupled systems in circuit simulation relying on a new global solvability result for the nonlinear equations of the Modified Nodal Analysis under suitable topological assumptions. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Codice articolo 9783832532789

Contatta il venditore

Compra nuovo

EUR 114,75
EUR 31,60 shipping
Spedito da Australia a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello