Da
AHA-BUCH GmbH, Einbeck, Germania
Valutazione del venditore 5 su 5 stelle
Venditore AbeBooks dal 14 agosto 2006
Neuware - This revised edition discusses numerical methods for computing eigenvalues and eigenvectors of large sparse matrices. It provides an in-depth view of the numerical methods that are applicable for solving matrix eigenvalue problems that arise in various engineering and scientific applications. Codice articolo 9781611970722
This revised edition discusses the numerical methods for computing the eigenvalues and eigenvectors of large sparse matrices.
Informazioni sull?autore: Yousef Saad is a College of Science and Engineering Distinguished Professor in the Department of Computer Science at the University of Minnesota. His current research interests include numerical linear algebra, sparse matrix computations, iterative methods, parallel computing, numerical methods for electronic structure and data analysis. He is a Fellow of SIAM and the AAAS.
Titolo: Numerical Methods for Large Eigenvalue ...
Casa editrice: Society For Industrial And Applied Mathematics (SIAM) Mai 2011
Data di pubblicazione: 2011
Legatura: Taschenbuch
Condizione: Neu
Da: Antiquariat Bookfarm, Löbnitz, Germania
Softcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 65 SAA 9780719033865 Sprache: Englisch Gewicht in Gramm: 450. Codice articolo 2497698
Quantità: 1 disponibili
Da: MW Books, New York, NY, U.S.A.
First Edition. Near-fine copy in the original illustrated, paper-covered boards. Spine bands and panel edges slightly dulled and dust-toned as with age. Corners sharp with an overall tight, bright and clean impression. Physical description; 346 pages : illustrations ; 24 cm. Notes: Includes bibliographical references (pages 323-340) and index.Contents: I. Background in Matrix Theory and Linear Algebra. 1. Matrices. 2. Square Matrices and Eigenvalues. 3. Types of Matrices. 4. Vector Inner Products and Norms. 5. Matrix Norms. 6. Subspaces. 7. Orthogonal Vectors and Subspaces. 8. Canonical Forms of Matrices. 9. Normal and Hermitian Matrices. 10. Nonnegative Matrices -- II. Sparse Matrices. 1. Introduction. 2. Storage Schemes. 3. Basic Sparse Matrix Operations. 4. Sparse Direct Solution Methods. 5. Test Problems. 6. SPARSKIT -- III. Perturbation Theory and Error Analysis. 1. Projectors and their Properties. 2. A-Posteriori Error Bounds. 3. Conditioning of Eigen-problems. 4. Localization Theorems -- IV. The Tools of Spectral Approximation. 1. Single Vector Iterations. 2. Deflation Techniques. 3. General Projection Methods. 4. Chebyshev Polynomials -- V. Subspace Iteration. 1. Simple Subspace Iteration. 2. Subspace Iteration with Projection. 3. Practical Implementations -- VI. Krylov Subspace Methods. 1. Krylov Subspaces. 2. Arnoldi's Method.3. The Hermitian Lanczos Algorithm. 4. Non-Hermitian Lanczos Algorithm. 5. Block Krylov Methods. 6. Convergence of the Lanczos Process. 7. Convergence of the Arnoldi Process -- VII. Acceleration Techniques and Hybrid Methods. 1. The Basic Chebyshev Iteration. 2. Arnoldi-Chebyshev Iteration. 3. Deflated Arnoldi-Chebyshev. 4. Chebyshev Subspace Iteration. 5. Least Squares -- Arnoldi -- VIII. Preconditioning Techniques. 1. Shift-and-invert Preconditioning. 2. Polynomial Preconditioning. 3. Davidson's Method. 4. Generalized Arnoldi Algorithms -- IX. Non-Standard Eigenvalue Problems. 1. Introduction. 2. Generalized Eigenvalue Problems. 3. Quadratic Problems -- X. Origins of Matrix Eigenvalue Problems. 1. Introduction. 2. Mechanical Vibrations. 3. Electrical Networks. 4. Quantum Chemistry. 5. Stability of Dynamical Systems. 6. Bifurcation Analysis. 7. Chemical Reactions. 8. Macro-economics. 9. Markov Chain Models. Subjects: Nonsymmetric matrices.Eigenvalues. Matrices asymétriques. Valeurs propres. Eigenvalues.Nonsymmetric matrices.Valeurs propres. Matrices.Matrices 1 Kg. Codice articolo 385855
Quantità: 1 disponibili
Da: MW Books Ltd., Galway, Irlanda
First Edition. Near-fine copy in the original illustrated, paper-covered boards. Spine bands and panel edges slightly dulled and dust-toned as with age. Corners sharp with an overall tight, bright and clean impression. Physical description; 346 pages : illustrations ; 24 cm. Notes: Includes bibliographical references (pages 323-340) and index.Contents: I. Background in Matrix Theory and Linear Algebra. 1. Matrices. 2. Square Matrices and Eigenvalues. 3. Types of Matrices. 4. Vector Inner Products and Norms. 5. Matrix Norms. 6. Subspaces. 7. Orthogonal Vectors and Subspaces. 8. Canonical Forms of Matrices. 9. Normal and Hermitian Matrices. 10. Nonnegative Matrices -- II. Sparse Matrices. 1. Introduction. 2. Storage Schemes. 3. Basic Sparse Matrix Operations. 4. Sparse Direct Solution Methods. 5. Test Problems. 6. SPARSKIT -- III. Perturbation Theory and Error Analysis. 1. Projectors and their Properties. 2. A-Posteriori Error Bounds. 3. Conditioning of Eigen-problems. 4. Localization Theorems -- IV. The Tools of Spectral Approximation. 1. Single Vector Iterations. 2. Deflation Techniques. 3. General Projection Methods. 4. Chebyshev Polynomials -- V. Subspace Iteration. 1. Simple Subspace Iteration. 2. Subspace Iteration with Projection. 3. Practical Implementations -- VI. Krylov Subspace Methods. 1. Krylov Subspaces. 2. Arnoldi's Method.3. The Hermitian Lanczos Algorithm. 4. Non-Hermitian Lanczos Algorithm. 5. Block Krylov Methods. 6. Convergence of the Lanczos Process. 7. Convergence of the Arnoldi Process -- VII. Acceleration Techniques and Hybrid Methods. 1. The Basic Chebyshev Iteration. 2. Arnoldi-Chebyshev Iteration. 3. Deflated Arnoldi-Chebyshev. 4. Chebyshev Subspace Iteration. 5. Least Squares -- Arnoldi -- VIII. Preconditioning Techniques. 1. Shift-and-invert Preconditioning. 2. Polynomial Preconditioning. 3. Davidson's Method. 4. Generalized Arnoldi Algorithms -- IX. Non-Standard Eigenvalue Problems. 1. Introduction. 2. Generalized Eigenvalue Problems. 3. Quadratic Problems -- X. Origins of Matrix Eigenvalue Problems. 1. Introduction. 2. Mechanical Vibrations. 3. Electrical Networks. 4. Quantum Chemistry. 5. Stability of Dynamical Systems. 6. Bifurcation Analysis. 7. Chemical Reactions. 8. Macro-economics. 9. Markov Chain Models. Subjects: Nonsymmetric matrices.Eigenvalues. Matrices asymétriques. Valeurs propres. Eigenvalues.Nonsymmetric matrices.Valeurs propres. Matrices.Matrices 1 Kg. Codice articolo 385855
Quantità: 1 disponibili
Da: MW Books, New York, NY, U.S.A.
First Edition. Fine copy in the original paper-covered boards. Slightest suggestion only of dust-dulling to the spine bands and panel edges. Remains particularly well-preserved overall; tight, bright, clean and strong. Physical description: 346 pages : illustrations ; 24 cm. Subject: Nonsymmetric matrices. Eigenvalues. Matrices. 1 Kg. Codice articolo 383486
Quantità: 1 disponibili
Da: MW Books Ltd., Galway, Irlanda
First Edition. Fine copy in the original paper-covered boards. Slightest suggestion only of dust-dulling to the spine bands and panel edges. Remains particularly well-preserved overall; tight, bright, clean and strong. Physical description: 346 pages : illustrations ; 24 cm. Subject: Nonsymmetric matrices. Eigenvalues. Matrices. 1 Kg. Codice articolo 383486
Quantità: 1 disponibili