Da
Ria Christie Collections, Uxbridge, Regno Unito
Valutazione del venditore 5 su 5 stelle
Venditore AbeBooks dal 25 marzo 2015
In. Codice articolo ria9780792352297_new
The realism of large scale numerical ocean models has improved dra matically in recent years, in part because modern computers permit a more faithful representation of the differential equations by their algebraic analogs. Equally significant, if not more so, has been the improved under standing of physical processes on space and time scales smaller than those that can be represented in such models. Today, some of the most challeng ing issues remaining in ocean modeling are associated with parameterizing the effects of these high-frequency, small-space scale processes. Accurate parameterizations are especially needed in long term integrations of coarse resolution ocean models that are designed to understand the ocean vari ability within the climate system on seasonal to decadal time scales. Traditionally, parameterizations of subgrid-scale, high-frequency mo tions in ocean modeling have been based on simple formulations, such as the Reynolds decomposition with constant diffusivity values. Until recently, modelers were concerned with first order issues such as a correct represen tation of the basic features of the ocean circulation. As the numerical simu lations become better and less dependent on the discretization choices, the focus is turning to the physics of the needed parameterizations and their numerical implementation. At the present time, the success of any large scale numerical simulation is directly dependent upon the choices that are made for the parameterization of various subgrid processes.
Recensione:
`... I strongly recommend this book for the library of each ocean climate modeler, indeed, for any climate modeler. It represents much more than a simple conference/workshop proceeding and may well fit into a course discussing physical parameterizations used in ocean modeling. It is my hope that such schools/workshops on climate-related science continue well into the future, thus producing more volumes of comparable quality and importance.'
Bulletin of the American Meteorological Society, 81:3 (2000)
Titolo: Ocean Modeling and Parameterization (Nato ...
Casa editrice: Springer
Data di pubblicazione: 1998
Legatura: Brossura
Condizione: New
Da: Dale A. Sorenson, Silver Spring, MD, U.S.A.
Softcover. Condizione: Near Fine. First Edition; Softcover issue. Edited by Eric P. Chassignet and Jacques Verron. Dordrecht Boston London: Kluwer Academic Publishers in cooperation with NATO Scientific Affairs Division, (1998). First Edition, Softcover Issue, Signed and inscribed on front endpaper, in part, "FYI Warm regards Eric". Large 8vo. viii,451pp, Index, References. Several figures. Softcover, near fine condition. This collection of 18 papers by leading scientists "to summarize our present knowledge of those processes requiring parameterization in ocean models, to fully consider their optimal applications, and to introduce young scientists to the current state of the field". ISBN 0792352297; Nato Science Series C: (516; Several figures; Large 8vo 9" - 10" tall; 459 pages. Codice articolo 9124
Quantità: 1 disponibili
Da: HPB-Red, Dallas, TX, U.S.A.
paperback. Condizione: Good. Connecting readers with great books since 1972! Used textbooks may not include companion materials such as access codes, etc. May have some wear or writing/highlighting. We ship orders daily and Customer Service is our top priority! Codice articolo S_445305561
Quantità: 1 disponibili
Da: moluna, Greven, Germania
Kartoniert / Broschiert. Condizione: New. Codice articolo 5968582
Quantità: Più di 20 disponibili
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Feb2416190182967
Quantità: Più di 20 disponibili
Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - Print on Demand Titel. Neuware -The realism of large scale numerical ocean models has improved dra matically in recent years, in part because modern computers permit a more faithful representation of the differential equations by their algebraic analogs. Equally significant, if not more so, has been the improved under standing of physical processes on space and time scales smaller than those that can be represented in such models. Today, some of the most challeng ing issues remaining in ocean modeling are associated with parameterizing the effects of these high-frequency, small-space scale processes. Accurate parameterizations are especially needed in long term integrations of coarse resolution ocean models that are designed to understand the ocean vari ability within the climate system on seasonal to decadal time scales. Traditionally, parameterizations of subgrid-scale, high-frequency mo tions in ocean modeling have been based on simple formulations, such as the Reynolds decomposition with constant diffusivity values. Until recently, modelers were concerned with first order issues such as a correct represen tation of the basic features of the ocean circulation. As the numerical simu lations become better and less dependent on the discretization choices, the focus is turning to the physics of the needed parameterizations and their numerical implementation. At the present time, the success of any large scale numerical simulation is directly dependent upon the choices that are made for the parameterization of various subgrid processes.Springer-Verlag KG, Sachsenplatz 4-6, 1201 Wien 464 pp. Englisch. Codice articolo 9780792352297
Quantità: 1 disponibili
Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania
Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -The realism of large scale numerical ocean models has improved dra matically in recent years, in part because modern computers permit a more faithful representation of the differential equations by their algebraic analogs. Equally significant, if not more so, has been the improved under standing of physical processes on space and time scales smaller than those that can be represented in such models. Today, some of the most challeng ing issues remaining in ocean modeling are associated with parameterizing the effects of these high-frequency, small-space scale processes. Accurate parameterizations are especially needed in long term integrations of coarse resolution ocean models that are designed to understand the ocean vari ability within the climate system on seasonal to decadal time scales. Traditionally, parameterizations of subgrid-scale, high-frequency mo tions in ocean modeling have been based on simple formulations, such as the Reynolds decomposition with constant diffusivity values. Until recently, modelers were concerned with first order issues such as a correct represen tation of the basic features of the ocean circulation. As the numerical simu lations become better and less dependent on the discretization choices, the focus is turning to the physics of the needed parameterizations and their numerical implementation. At the present time, the success of any large scale numerical simulation is directly dependent upon the choices that are made for the parameterization of various subgrid processes. 464 pp. Englisch. Codice articolo 9780792352297
Quantità: 2 disponibili
Da: AHA-BUCH GmbH, Einbeck, Germania
Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - The realism of large scale numerical ocean models has improved dra matically in recent years, in part because modern computers permit a more faithful representation of the differential equations by their algebraic analogs. Equally significant, if not more so, has been the improved under standing of physical processes on space and time scales smaller than those that can be represented in such models. Today, some of the most challeng ing issues remaining in ocean modeling are associated with parameterizing the effects of these high-frequency, small-space scale processes. Accurate parameterizations are especially needed in long term integrations of coarse resolution ocean models that are designed to understand the ocean vari ability within the climate system on seasonal to decadal time scales. Traditionally, parameterizations of subgrid-scale, high-frequency mo tions in ocean modeling have been based on simple formulations, such as the Reynolds decomposition with constant diffusivity values. Until recently, modelers were concerned with first order issues such as a correct represen tation of the basic features of the ocean circulation. As the numerical simu lations become better and less dependent on the discretization choices, the focus is turning to the physics of the needed parameterizations and their numerical implementation. At the present time, the success of any large scale numerical simulation is directly dependent upon the choices that are made for the parameterization of various subgrid processes. Codice articolo 9780792352297
Quantità: 1 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. Codice articolo 262175441
Quantità: 4 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Print on Demand. Codice articolo 5672462
Quantità: 4 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. PRINT ON DEMAND. Codice articolo 182175451
Quantità: 4 disponibili