RAG-Driven Generative AI: Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone

Denis Rothman

ISBN 10: 1836200919 ISBN 13: 9781836200918
Editore: Packt Publishing, 2024
Nuovi paperback

Da Russell Books, Victoria, BC, Canada Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Heritage Bookseller
Membro AbeBooks dal 1996

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Special order direct from the distributor. Codice articolo ING9781836200918

Segnala questo articolo

Riassunto:

Minimize AI hallucinations and build accurate, custom generative AI pipelines with RAG using embedded vector databases and integrated human feedback

Get With Your Book: PDF Copy, AI Assistant, and Next-Gen Reader Free

Key Features

  • Implement RAG’s traceable outputs, linking each response to its source document to build reliable multimodal conversational agents
  • Deliver accurate generative AI models in pipelines integrating RAG, real-time human feedback improvements, and knowledge graphs
  • Balance cost and performance between dynamic retrieval datasets and fine-tuning static data

Book Description

RAG-Driven Generative AI provides a roadmap for building effective LLM, computer vision, and generative AI systems that balance performance and costs.

This book offers a detailed exploration of RAG and how to design, manage, and control multimodal AI pipelines. By connecting outputs to traceable source documents, RAG improves output accuracy and contextual relevance, offering a dynamic approach to managing large volumes of information. This AI book shows you how to build a RAG framework, providing practical knowledge on vector stores, chunking, indexing, and ranking. You’ll discover techniques to optimize your project’s performance and better understand your data, including using adaptive RAG and human feedback to refine retrieval accuracy, balancing RAG with fine-tuning, implementing dynamic RAG to enhance real-time decision-making, and visualizing complex data with knowledge graphs.

You’ll be exposed to a hands-on blend of frameworks like LlamaIndex and Deep Lake, vector databases such as Pinecone and Chroma, and models from Hugging Face and OpenAI. By the end of this book, you will have acquired the skills to implement intelligent solutions, keeping you competitive in fields from production to customer service across any project.

What you will learn

  • Scale RAG pipelines to handle large datasets efficiently
  • Employ techniques that minimize hallucinations and ensure accurate responses
  • Implement indexing techniques to improve AI accuracy with traceable and transparent outputs
  • Customize and scale RAG-driven generative AI systems across domains
  • Find out how to use Deep Lake and Pinecone for efficient and fast data retrieval
  • Control and build robust generative AI systems grounded in real-world data
  • Combine text and image data for richer, more informative AI responses

Who this book is for

This book is ideal for data scientists, AI engineers, machine learning engineers, and MLOps engineers. If you are a solutions architect, software developer, product manager, or project manager looking to enhance the decision-making process of building RAG applications, then you’ll find this book useful.

Table of Contents

  1. Why Retrieval Augmented Generation?
  2. RAG Embedding Vector Stores with Deep Lake and OpenAI
  3. Building Index-Based RAG with LlamaIndex, Deep Lake, and OpenAI
  4. Multimodal Modular RAG for Drone Technology
  5. Boosting RAG Performance with Expert Human Feedback
  6. Scaling RAG Bank Customer Data with Pinecone
  7. Building Scalable Knowledge-Graph-Based RAG with Wikipedia API and LlamaIndex
  8. Dynamic RAG with Chroma and Hugging Face Llama
  9. Empowering AI Models: Fine-Tuning RAG Data and Human Feedback
  10. RAG for Video Stock Production with Pinecone and OpenAI

Informazioni sull?autore:

Denis Rothman graduated from Sorbonne University and Paris-Diderot University, and as a student, he wrote and registered a patent for one of the earliest word2vector embeddings and word piece tokenization solutions. He started a company focused on deploying AI and went on to author one of the first AI cognitive NLP chatbots, applied as a language teaching tool for Moët et Chandon (part of LVMH) and more. Denis rapidly became an expert in explainable AI, incorporating interpretable, acceptance-based explanation data and interfaces into solutions implemented for major corporate projects in the aerospace, apparel, and supply chain sectors. His core belief is that you only really know something once you have taught somebody how to do it.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: RAG-Driven Generative AI: Build custom ...
Casa editrice: Packt Publishing
Data di pubblicazione: 2024
Legatura: paperback
Condizione: New

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Rothman, Denis
Editore: Packt Publishing, 2024
ISBN 10: 1836200919 ISBN 13: 9781836200918
Antico o usato Paperback

Da: ThriftBooks-Atlanta, AUSTELL, GA, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Good. No Jacket. Pages can have notes/highlighting. Spine may show signs of wear. ~ ThriftBooks: Read More, Spend Less. Codice articolo G1836200919I3N00

Contatta il venditore

Compra usato

EUR 21,01
Spedizione gratuita
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Rothman, Denis
Editore: Packt Publishing, 2024
ISBN 10: 1836200919 ISBN 13: 9781836200918
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 48535597-n

Contatta il venditore

Compra nuovo

EUR 38,43
EUR 2,25 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Rothman, Denis
ISBN 10: 1836200919 ISBN 13: 9781836200918
Nuovo Paperback or Softback

Da: BargainBookStores, Grand Rapids, MI, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback or Softback. Condizione: New. RAG-Driven Generative AI: Build custom retrieval augmented generation pipelines with LlamaIndex, Deep Lake, and Pinecone. Book. Codice articolo BBS-9781836200918

Contatta il venditore

Compra nuovo

EUR 40,75
Spedizione gratuita
Spedito in U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Denis Rothman
Editore: Packt Publishing, 2024
ISBN 10: 1836200919 ISBN 13: 9781836200918
Nuovo Brossura

Da: California Books, Miami, FL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo I-9781836200918

Contatta il venditore

Compra nuovo

EUR 42,94
Spedizione gratuita
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Rothman, Denis
Editore: Packt Publishing, 2024
ISBN 10: 1836200919 ISBN 13: 9781836200918
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 48535597

Contatta il venditore

Compra usato

EUR 43,91
EUR 2,25 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Rothman, Denis
Editore: Packt Publishing, 2024
ISBN 10: 1836200919 ISBN 13: 9781836200918
Nuovo Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 48535597-n

Contatta il venditore

Compra nuovo

EUR 47,16
EUR 17,07 shipping
Spedito da Regno Unito a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Denis Rothman
Editore: Packt Publishing Limited, 2024
ISBN 10: 1836200919 ISBN 13: 9781836200918
Nuovo PAP
Print on Demand

Da: PBShop.store UK, Fairford, GLOS, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Delivered from our UK warehouse in 4 to 14 business days. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781836200918

Contatta il venditore

Compra nuovo

EUR 47,17
EUR 4,74 shipping
Spedito da Regno Unito a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Rothman, Denis
Editore: Packt Publishing, 2024
ISBN 10: 1836200919 ISBN 13: 9781836200918
Antico o usato Brossura

Da: GreatBookPricesUK, Woodford Green, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 48535597

Contatta il venditore

Compra usato

EUR 50,79
EUR 17,07 shipping
Spedito da Regno Unito a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Denis Rothman
Editore: Packt Publishing Limited, 2024
ISBN 10: 1836200919 ISBN 13: 9781836200918
Nuovo PAP
Print on Demand

Da: PBShop.store US, Wood Dale, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PAP. Condizione: New. New Book. Shipped from UK. THIS BOOK IS PRINTED ON DEMAND. Established seller since 2000. Codice articolo L0-9781836200918

Contatta il venditore

Compra nuovo

EUR 51,24
Spedizione gratuita
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Foto dell'editore

Denis Rothman
ISBN 10: 1836200919 ISBN 13: 9781836200918
Nuovo Paperback
Print on Demand

Da: CitiRetail, Stevenage, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. Minimize AI hallucinations and build accurate, custom generative AI pipelines with RAG using embedded vector databases and integrated human feedbackGet With Your Book: PDF Copy, AI Assistant, and Next-Gen Reader FreeKey FeaturesImplement RAGs traceable outputs, linking each response to its source document to build reliable multimodal conversational agentsDeliver accurate generative AI models in pipelines integrating RAG, real-time human feedback improvements, and knowledge graphsBalance cost and performance between dynamic retrieval datasets and fine-tuning static dataBook DescriptionRAG-Driven Generative AI provides a roadmap for building effective LLM, computer vision, and generative AI systems that balance performance and costs.This book offers a detailed exploration of RAG and how to design, manage, and control multimodal AI pipelines. By connecting outputs to traceable source documents, RAG improves output accuracy and contextual relevance, offering a dynamic approach to managing large volumes of information. This AI book shows you how to build a RAG framework, providing practical knowledge on vector stores, chunking, indexing, and ranking. Youll discover techniques to optimize your projects performance and better understand your data, including using adaptive RAG and human feedback to refine retrieval accuracy, balancing RAG with fine-tuning, implementing dynamic RAG to enhance real-time decision-making, and visualizing complex data with knowledge graphs.Youll be exposed to a hands-on blend of frameworks like LlamaIndex and Deep Lake, vector databases such as Pinecone and Chroma, and models from Hugging Face and OpenAI. By the end of this book, you will have acquired the skills to implement intelligent solutions, keeping you competitive in fields from production to customer service across any project.What you will learnScale RAG pipelines to handle large datasets efficientlyEmploy techniques that minimize hallucinations and ensure accurate responsesImplement indexing techniques to improve AI accuracy with traceable and transparent outputsCustomize and scale RAG-driven generative AI systems across domainsFind out how to use Deep Lake and Pinecone for efficient and fast data retrievalControl and build robust generative AI systems grounded in real-world dataCombine text and image data for richer, more informative AI responsesWho this book is forThis book is ideal for data scientists, AI engineers, machine learning engineers, and MLOps engineers. If you are a solutions architect, software developer, product manager, or project manager looking to enhance the decision-making process of building RAG applications, then youll find this book useful. Explore the transformative potential of RAG-driven LLMs, computer vision, and generative AI, from basics to building a complex RAG pipeline This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9781836200918

Contatta il venditore

Compra nuovo

EUR 52,75
EUR 42,12 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Vedi altre 10 copie di questo libro

Vedi tutti i risultati per questo libro