Da
Ria Christie Collections, Uxbridge, Regno Unito
Valutazione del venditore 5 su 5 stelle
Venditore AbeBooks dal 25 marzo 2015
In. Codice articolo ria9781009123235_new
This unified random matrix approach to large-dimensional machine learning covers applications from power detection to deep neural networks.
Informazioni sugli autori:
Romain Couillet is a Full Professor at Grenoble-Alpes University, France. Prior to that, he was a Full Professor at CentraleSupélec, University of Paris-Saclay. His research topics are in random matrix theory applied to statistics, machine learning, and signal processing. He is the recipient of the 2021 IEEE/SEE Glavieux prize, of the 2013 CNRS Bronze Medal, and of the 2013 IEEE ComSoc Outstanding Young Researcher Award.
Zhenyu Liao is an Associated Professor with Huazhong University of Science and Technology (HUST), China. He is the recipient of the 2021 East Lake Youth Talent Program Fellowship of HUST, the 2019 ED STIC Ph.D. Student Award, and the 2016 Supélec Foundation Ph.D. Fellowship of University of Paris-Saclay, France.
Titolo: Random Matrix Methods for Machine Learning
Casa editrice: Cambridge University Press
Data di pubblicazione: 2022
Legatura: Rilegato
Condizione: New
Da: Lucky's Textbooks, Dallas, TX, U.S.A.
Condizione: New. Codice articolo ABLIING23Mar2317530130886
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: New. Codice articolo 44445258-n
Quantità: Più di 20 disponibili
Da: Books Puddle, New York, NY, U.S.A.
Condizione: New. New edition NO-PA16APR2015-KAP. Codice articolo 26395191542
Quantità: 1 disponibili
Da: Majestic Books, Hounslow, Regno Unito
Condizione: New. Codice articolo 402234153
Quantità: 1 disponibili
Da: Biblios, Frankfurt am main, HESSE, Germania
Condizione: New. Codice articolo 18395191548
Quantità: 1 disponibili
Da: Revaluation Books, Exeter, Regno Unito
Hardcover. Condizione: Brand New. 450 pages. 9.96x6.97x0.91 inches. In Stock. This item is printed on demand. Codice articolo __1009123238
Quantità: 1 disponibili
Da: California Books, Miami, FL, U.S.A.
Condizione: New. Codice articolo I-9781009123235
Quantità: Più di 20 disponibili
Da: GreatBookPricesUK, Woodford Green, Regno Unito
Condizione: New. Codice articolo 44445258-n
Quantità: Più di 20 disponibili
Da: GreatBookPrices, Columbia, MD, U.S.A.
Condizione: As New. Unread book in perfect condition. Codice articolo 44445258
Quantità: Più di 20 disponibili
Da: CitiRetail, Stevenage, Regno Unito
Hardcover. Condizione: new. Hardcover. This book presents a unified theory of random matrices for applications in machine learning, offering a large-dimensional data vision that exploits concentration and universality phenomena. This enables a precise understanding, and possible improvements, of the core mechanisms at play in real-world machine learning algorithms. The book opens with a thorough introduction to the theoretical basics of random matrices, which serves as a support to a wide scope of applications ranging from SVMs, through semi-supervised learning, unsupervised spectral clustering, and graph methods, to neural networks and deep learning. For each application, the authors discuss small- versus large-dimensional intuitions of the problem, followed by a systematic random matrix analysis of the resulting performance and possible improvements. All concepts, applications, and variations are illustrated numerically on synthetic as well as real-world data, with MATLAB and Python code provided on the accompanying website. For graduate students, practitioners, and sophisticated users, this book offers a tutorial approach to the foundations of random matrix theory for machine learning and systematic analyses of advanced applications ranging from power detection to deep neural networks. MATLAB and Python code is provided for all concepts and applications. This item is printed on demand. Shipping may be from our UK warehouse or from our Australian or US warehouses, depending on stock availability. Codice articolo 9781009123235
Quantità: 1 disponibili