How to solve partial differential systems by completing the square. This could well have been the title of this monograph as it grew into a project to develop a s- tematic approach for associating suitable nonnegative energy functionals to a large class of partial differential equations (PDEs) and evolutionary systems. The minima of these functionals are to be the solutions we seek, not because they are critical points (i. e. , from the corresponding Euler-Lagrange equations) but from also - ing zeros of these functionals. The approach can be traced back to Bogomolnyi s trick of completing squares in the basic equations of quantum eld theory (e. g. , Yang-Mills, Seiberg-Witten, Ginzburg-Landau, etc. ,), which allows for the deri- tion of the so-called self (or antiself) dual version of these equations. In reality, the self-dual Lagrangians we consider here were inspired by a variational - proach proposed over 30 years ago by Brezis ´ and Ekeland for the heat equation and other gradient ows of convex energies. It is based on Fenchel-Legendre - ality and can be used on any convex functional not just quadratic ones making them applicable in a wide range of problems. In retrospect, we realized that the - ergy identities satis ed by Leray s solutions for the Navier-Stokes equations are also another manifestation of the concept of self-duality in the context of evolution equations.
Based on recent research by the author and his graduate students, this text describes novel variational formulations and resolutions of a large class of partial differential equations and evolutions, many of which are not amenable to the methods of the classical calculus of variations. While it contains many new results, the general and unifying framework of the approach, its versatility in solving a disparate set of equations, and its reliance on basic functional analytic principles, makes it suitable for an intermediate level graduate course. The applications, however, require a fair knowledge of classical analysis and PDEs which is needed to make judicious choices of function spaces where the self-dual variational principles need to be applied. It is the author's hope that this material will become standard for all graduate students interested in convexity methods for PDEs.
Nassif Ghoussoub is a Distinguished University Professor at the University of British Columbia. He was editor-in-chief of the Canadian Journal of Mathematics for the period 1993-2003, and has served on the editorial board of various international journals. He is the founding director of the Pacific Institute for the Mathematical Sciences (PIMS), and a co-founder of the MITACS Network of Centres of Excellence. He is also the founder and scientific director of the Banff International Research Station (BIRS). He is the recipient of many awards, including the Coxeter-James, and the Jeffrey-Williams prizes. He was elected Fellow of the Royal Society of Canada in 1993, and was the recipient of a Doctorat Honoris Causa from the Universite Paris-Dauphine in 2004.