Similarity-Based Clustering: Recent Developments and Biomedical Applications (Lecture Notes in Computer Science)

ISBN 10: 3642018041 ISBN 13: 9783642018046
Editore: Springer Berlin Heidelberg, 2009
Usato Paperback

Da Mispah books, Redhill, SURRE, Regno Unito Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 15 aprile 2021

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Like New. Codice articolo ERICA75836420180415

Segnala questo articolo

Riassunto:

Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi?cation, prototypes, or Hebbian learning, with a large variety of di?erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro?les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane?cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci?cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way toward important new directions of algorithmic design and accompanying theory.

Dalla quarta di copertina:

This book is the outcome of the Dagstuhl Seminar on "Similarity-Based Clustering" held at Dagstuhl Castle, Germany, in Spring 2007.

In three chapters, the three fundamental aspects of a theoretical background, the representation of data and their connection to algorithms, and particular challenging applications are considered. Topics discussed concern a theoretical investigation and foundation of prototype based learning algorithms, the development and extension of models to directions such as general data structures and the application for the domain of medicine and biology.

Similarity based methods find widespread applications in diverse application domains, including biomedical problems, but also in remote sensing, geoscience or other technical domains. The presentations give a good overview about important research results in similarity-based learning, whereby the character of overview articles with references to correlated research articles makes the contributions particularly suited for a first reading concerning these topics.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Similarity-Based Clustering: Recent ...
Casa editrice: Springer Berlin Heidelberg
Data di pubblicazione: 2009
Legatura: Paperback
Condizione: Like New
Tipologia articolo: book

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Unbekannt
Editore: Springer Spektrum, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Antico o usato Brossura

Da: Buchpark, Trebbin, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Codice articolo 5437136/12

Contatta il venditore

Compra usato

EUR 35,81
EUR 105,00 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Villmann, Thomas|Biehl, M.|Hammer, B.|Verleysen, M.
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Kartoniert / Broschiert
Print on Demand

Da: moluna, Greven, Germania

Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Kartoniert / Broschiert. Condizione: New. Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Similarity-based learning methods have a great potential as an intuitive and ?exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi?cation, prototype. Codice articolo 5043497

Contatta il venditore

Compra nuovo

EUR 48,37
EUR 48,99 shipping
Spedito da Germania a U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thomas Villmann (u. a.)
Editore: Springer, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Taschenbuch

Da: preigu, Osnabrück, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Similarity-Based Clustering | Recent Developments and Biomedical Applications | Thomas Villmann (u. a.) | Taschenbuch | xi | Englisch | 2009 | Springer | EAN 9783642018046 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Codice articolo 101553435

Contatta il venditore

Compra nuovo

EUR 50,35
EUR 70,00 shipping
Spedito da Germania a U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Editore: Springer, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Brossura

Da: Lucky's Textbooks, Dallas, TX, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo ABLIING23Mar3113020213968

Contatta il venditore

Compra nuovo

EUR 51,96
EUR 3,40 shipping
Spedito in U.S.A.

Quantità: Più di 20 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thomas Villmann
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Taschenbuch

Da: AHA-BUCH GmbH, Einbeck, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Druck auf Anfrage Neuware - Printed after ordering - Similarity-based learning methods have a great potential as an intuitive and exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi cation, prototypes, or Hebbian learning, with a large variety of di erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andther apyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way towardimportant new directions of algorithmic design and accompanying theory. Codice articolo 9783642018046

Contatta il venditore

Compra nuovo

EUR 53,49
EUR 61,88 shipping
Spedito da Germania a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thomas Villmann
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Taschenbuch

Da: buchversandmimpf2000, Emtmannsberg, BAYE, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. Neuware -Similarity-based learning methods have a great potential as an intuitive and exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi cation, prototypes, or Hebbian learning, with a large variety of di erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way towardimportant new directions of algorithmic design and accompanying theory.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 216 pp. Englisch. Codice articolo 9783642018046

Contatta il venditore

Compra nuovo

EUR 53,49
EUR 60,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Thomas Villmann
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Taschenbuch
Print on Demand

Da: BuchWeltWeit Ludwig Meier e.K., Bergisch Gladbach, Germania

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Taschenbuch. Condizione: Neu. This item is printed on demand - it takes 3-4 days longer - Neuware -Similarity-based learning methods have a great potential as an intuitive and exible toolbox for mining, visualization,and inspection of largedata sets. They combine simple and human-understandable principles, such as distance-based classi cation, prototypes, or Hebbian learning, with a large variety of di erent, problem-adapted design choices, such as a data-optimum topology, similarity measure, or learning mode. In medicine, biology, and medical bioinformatics, more and more data arise from clinical measurements such as EEG or fMRI studies for monitoring brain activity, mass spectrometry data for the detection of proteins, peptides and composites, or microarray pro les for the analysis of gene expressions. Typically, data are high-dimensional, noisy, and very hard to inspect using classic (e. g. , symbolic or linear) methods. At the same time, new technologies ranging from the possibility of a very high resolution of spectra to high-throughput screening for microarray data are rapidly developing and carry thepromiseofane cient,cheap,andautomaticgatheringoftonsofhigh-quality data with large information potential. Thus, there is a need for appropriate - chine learning methods which help to automatically extract and interpret the relevant parts of this information and which, eventually, help to enable und- standingofbiologicalsystems,reliablediagnosisoffaults,andtherapyofdiseases such as cancer based on this information. Moreover, these application scenarios pose fundamental and qualitatively new challenges to the learning systems - cause of the speci cs of the data and learning tasks. Since these characteristics are particularly pronounced within the medical domain, but not limited to it and of principled interest, this research topic opens the way toward important new directions of algorithmic design and accompanying theory. 216 pp. Englisch. Codice articolo 9783642018046

Contatta il venditore

Compra nuovo

EUR 53,49
EUR 23,00 shipping
Spedito da Germania a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello

Foto dell'editore

Villmann, Thomas
Editore: Springer 2009-06, 2009
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo PF

Da: Chiron Media, Wallingford, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

PF. Condizione: New. Codice articolo 6666-IUK-9783642018046

Contatta il venditore

Compra nuovo

EUR 56,20
EUR 17,68 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 10 disponibili

Aggiungi al carrello

Foto dell'editore

Villmann, Thomas (Editor)/ Biehl, M. (Editor)/ Hammer, B. (Editor)
ISBN 10: 3642018041 ISBN 13: 9783642018046
Nuovo Paperback

Da: Revaluation Books, Exeter, Regno Unito

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: Brand New. 1st edition. 203 pages. 9.00x6.00x0.25 inches. In Stock. Codice articolo x-3642018041

Contatta il venditore

Compra nuovo

EUR 76,58
EUR 11,41 shipping
Spedito da Regno Unito a U.S.A.

Quantità: 2 disponibili

Aggiungi al carrello