Statistical Learning Theory and Stochastic Optimization.
Catoni, Olivier
Venduto da Antiquariat Bookfarm, Löbnitz, Germania
Venditore AbeBooks dal 28 ottobre 2009
Usato - Brossura
Quantità: 1 disponibili
Aggiungere al carrelloVenduto da Antiquariat Bookfarm, Löbnitz, Germania
Venditore AbeBooks dal 28 ottobre 2009
Quantità: 1 disponibili
Aggiungere al carrelloEx-library with stamp and library-signature. GOOD condition, some traces of use. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. C-04205 9783540225720 Sprache: Englisch Gewicht in Gramm: 550.
Codice articolo 2490434
Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results.
Statistical learning theory is aimed at analyzing complex data with necessarily approximate models. This book is intended for an audience with a graduate background in probability theory and statistics. It will be useful to any reader wondering why it may be a good idea, to use as is often done in practice a notoriously "wrong'' (i.e. over-simplified) model to predict, estimate or classify. This point of view takes its roots in three fields: information theory, statistical mechanics, and PAC-Bayesian theorems. Results on the large deviations of trajectories of Markov chains with rare transitions are also included. They are meant to provide a better understanding of stochastic optimization algorithms of common use in computing estimators. The author focuses on non-asymptotic bounds of the statistical risk, allowing one to choose adaptively between rich and structured families of models and corresponding estimators. Two mathematical objects pervade the book: entropy and Gibbs measures. The goal is to show how to turn them into versatile and efficient technical tools, that will stimulate further studies and results.
Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.
Visita la pagina della libreria
Avviso di revoca/
Condizioni Generali di Contratto e informazioni per i clienti/
Informativa sulla privacy
Diritto di recesso per consumatori
(Il consumatore è qualsiasi persona fisica che conclude un negozio giuridico per scopi che non possono essere attribuiti alla sua attività professionale nè commerciale nè autonoma.)
Informativa sul diritto di recesso
Diritto di recesso
Il presente contratto può essere rescisso entro 30 giorni senza obbligo di specificarne i motivi.
Il termine di revoca è d...
The flat shipping rates are based on shipments with an average weight. If the book you ordered is particularly heavy or bulky, we will inform you of any additional shipping charges that may apply.
Quantità dell?ordine | Da 7 a 14 giorni lavorativi | Da 7 a 14 giorni lavorativi |
---|---|---|
Primo articolo | EUR 16.00 | EUR 40.00 |
I tempi di consegna sono stabiliti dai venditori e variano in base al corriere e al paese. Gli ordini che devono attraversare una dogana possono subire ritardi e spetta agli acquirenti pagare eventuali tariffe o dazi associati. I venditori possono contattarti in merito ad addebiti aggiuntivi dovuti a eventuali maggiorazioni dei costi di spedizione dei tuoi articoli.