Supporting Operational and Real-Time Planning Tasks of Road Freight Transport with Machine Learning: Guiding the Implementation of Machine Learning . Information Systems and Management Science)

Lechtenberg, Sandra

ISBN 10: 3832556303 ISBN 13: 9783832556303
Editore: Logos Verlag Berlin GmbH, 2023
Nuovi Brossura

Da Kennys Bookstore, Olney, MD, U.S.A. Valutazione del venditore 4 su 5 stelle 4 stelle, Maggiori informazioni sulle valutazioni dei venditori

Venditore AbeBooks dal 9 ottobre 2009

Questo articolo specifico non è più disponibile.

Riguardo questo articolo

Descrizione:

Codice articolo V9783832556303

Segnala questo articolo

Riassunto:

World-wide trends such as globalization, demographic shifts, increased customer demands, and shorter product lifecycles present a significant challenge to the road freight transport industry: meeting the growing road freight transport demand economically while striving for sustainability. Artificial intelligence, particularly machine learning, is expected to empower transport planners to incorporate more information and react quicker to the fast-changing decision environment. Hence, using machine learning can lead to more efficient and effective transport planning. However, despite the promising prospects of machine learning in road freight transport planning, both academia and industry struggle to identify and implement suitable use cases to gain a competitive edge. In her dissertation, Sandra Lechtenberg explores how machine learning can enhance decision-making in operational and real-time road freight transport planning. She outlines an implementation guideline, which involves identifying decision tasks in planning processes, assessing their suitability for machine learning, and proposing steps to follow when implementing respective algorithms.

Le informazioni nella sezione "Su questo libro" possono far riferimento a edizioni diverse di questo titolo.

Dati bibliografici

Titolo: Supporting Operational and Real-Time ...
Casa editrice: Logos Verlag Berlin GmbH
Data di pubblicazione: 2023
Legatura: Brossura
Condizione: New

I migliori risultati di ricerca su AbeBooks

Foto dell'editore

Lechtenberg, Sandra
Editore: Logos Verlag Berlin, 2023
ISBN 10: 3832556303 ISBN 13: 9783832556303
Nuovo paperback

Da: ISD LLC, Bristol, CT, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

paperback. Condizione: New. Codice articolo 1829191

Contatta il venditore

Compra nuovo

EUR 65,97
Spedizione gratuita
Spedito in U.S.A.

Quantità: 4 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Lechtenberg, Sandra
Editore: Logos Verlag Berlin, 2023
ISBN 10: 3832556303 ISBN 13: 9783832556303
Nuovo Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: New. Codice articolo 49216477-n

Contatta il venditore

Compra nuovo

EUR 90,02
EUR 2,25 shipping
Spedito in U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Immagini fornite dal venditore

Lechtenberg, Sandra
Editore: Logos Verlag Berlin, 2023
ISBN 10: 3832556303 ISBN 13: 9783832556303
Antico o usato Brossura

Da: GreatBookPrices, Columbia, MD, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Condizione: As New. Unread book in perfect condition. Codice articolo 49216477

Contatta il venditore

Compra usato

EUR 90,76
EUR 2,25 shipping
Spedito in U.S.A.

Quantità: 5 disponibili

Aggiungi al carrello

Foto dell'editore

Sandra Lechtenberg
ISBN 10: 3832556303 ISBN 13: 9783832556303
Nuovo Paperback

Da: Grand Eagle Retail, Bensenville, IL, U.S.A.

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. World-wide trends such as globalization, demographic shifts, increased customer demands, and shorter product lifecycles present a significant challenge to the road freight transport industry: meeting the growing road freight transport demand economically while striving for sustainability.Artificial intelligence, particularly machine learning, is expected to empower transport planners to incorporate more information and react quicker to the fast-changing decision environment. Hence, using machine learning can lead to more efficient and effective transport planning. However, despite the promising prospects of machine learning in road freight transport planning, both academia and industry struggle to identify and implement suitable use cases to gain a competitive edge.In her dissertation, Sandra Lechtenberg explores how machine learning can enhance decision-making in operational and real-time road freight transport planning. She outlines an implementation guideline, which involves identifying decision tasks in planning processes, assessing their suitability for machine learning, and proposing steps to follow when implementing respective algorithms. Shipping may be from multiple locations in the US or from the UK, depending on stock availability. Codice articolo 9783832556303

Contatta il venditore

Compra nuovo

EUR 92,35
Spedizione gratuita
Spedito in U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello

Foto dell'editore

Sandra Lechtenberg
ISBN 10: 3832556303 ISBN 13: 9783832556303
Nuovo Paperback

Da: AussieBookSeller, Truganina, VIC, Australia

Valutazione del venditore 5 su 5 stelle 5 stelle, Maggiori informazioni sulle valutazioni dei venditori

Paperback. Condizione: new. Paperback. World-wide trends such as globalization, demographic shifts, increased customer demands, and shorter product lifecycles present a significant challenge to the road freight transport industry: meeting the growing road freight transport demand economically while striving for sustainability.Artificial intelligence, particularly machine learning, is expected to empower transport planners to incorporate more information and react quicker to the fast-changing decision environment. Hence, using machine learning can lead to more efficient and effective transport planning. However, despite the promising prospects of machine learning in road freight transport planning, both academia and industry struggle to identify and implement suitable use cases to gain a competitive edge.In her dissertation, Sandra Lechtenberg explores how machine learning can enhance decision-making in operational and real-time road freight transport planning. She outlines an implementation guideline, which involves identifying decision tasks in planning processes, assessing their suitability for machine learning, and proposing steps to follow when implementing respective algorithms. Shipping may be from our Sydney, NSW warehouse or from our UK or US warehouse, depending on stock availability. Codice articolo 9783832556303

Contatta il venditore

Compra nuovo

EUR 174,73
EUR 31,60 shipping
Spedito da Australia a U.S.A.

Quantità: 1 disponibili

Aggiungi al carrello